Publications by authors named "Anna Honko"

Article Synopsis
  • Next-generation sequencing (NGS) struggles to fully capture the critical 5' and 3' ends of RNA virus genomes, which are essential for understanding their replication and transcription.
  • The newly developed ViBE-Seq method offers high-resolution sequencing of these genome ends using minimal RNA, improving the reliability of data collection for RNA viruses like Ebola and Marburg.
  • ViBE-Seq also helps identify the activity of different reverse transcriptases, providing a comprehensive approach to sequencing emerging viral genomes.
View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation.

View Article and Find Full Text PDF

Infection with Sudan virus (SUDV) is characterized by an aggressive disease course with case fatality rates between 40-100% and no approved vaccines or therapeutics. SUDV causes sporadic outbreaks in sub-Saharan Africa, including a recent outbreak in Uganda which has resulted in over 100 confirmed cases in one month. Prior vaccine and therapeutic efforts have historically prioritized Ebola virus (EBOV), leading to a significant gap in available treatments.

View Article and Find Full Text PDF
Article Synopsis
  • Lassa virus (LASV) causes Lassa fever, a severe hemorrhagic fever primarily found in certain African countries, and this study investigates its effects in cynomolgus macaques exposed to LASV via aerosol.
  • The progression of the disease was observed, with gross lesions emerging by day 6 and systemic involvement becoming evident by that time as well, particularly in the pulmonary and hemolymphatic systems.
  • The research highlights the timeline of viremia and histopathologic changes and provides an extensive atlas of these lesions, which can be used for comparison with other models of aerosolized Arenaviral diseases.
View Article and Find Full Text PDF

Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays.

View Article and Find Full Text PDF

Ebola virus (EBOV) causes Ebola virus disease (EVD), marked by severe hemorrhagic fever; however, the mechanisms underlying the disease remain unclear. To assess the molecular basis of EVD across time, we performed RNA sequencing on 17 tissues from a natural history study of 21 rhesus monkeys, developing new methods to characterize host-pathogen dynamics. We identified alterations in host gene expression with previously unknown tissue-specific changes, including downregulation of genes related to tissue connectivity.

View Article and Find Full Text PDF

Monoclonal antibody (mAb) therapies have rapidly become a powerful class of therapeutics with applications covering a diverse range of clinical indications. Though most widely used for the treatment of cancer, mAbs are also playing an increasing role in the defense of viral infections, most recently with palivizumab for prevention and treatment of severe RSV infections in neonatal and pediatric populations. In addition, during the COVID-19 pandemic, mAbs provided a bridge to the rollout of vaccines; however, their continued role as a therapeutic option for those at greatest risk of severe disease has become limited due to the emergence of neutralization resistant Omicron variants.

View Article and Find Full Text PDF

We describe the results of a prospective observational study of the clinical natural history of human monkeypox (mpox) virus (MPXV) infections at the remote L'Hopital General de Reference de Kole (Kole hospital), the rainforest of the Congo River basin of the Democratic Republic of the Congo (DRC) from March 2007 until August 2011. The research was conducted jointly by the Institute National de Recherche Biomedical (INRB) and the US Army Medical Research Institute of Infectious Diseases (USAMRIID). The Kole hospital was one of the two previous WHO Mpox study sites (1981-1986).

View Article and Find Full Text PDF

Marburg virus (MARV) causes a severe hemorrhagic fever disease in primates with mortality rates in humans of up to 90%. MARV has been identified as a category A bioterrorism agent by the Centers for Disease Control and Prevention (CDC) and priority pathogen A by the National Institute of Allergy and Infectious Diseases (NIAID), needing urgent research and development of countermeasures because of the high public health risk it poses. The recent cases of MARV in West Africa underscore the substantial outbreak potential of this virus.

View Article and Find Full Text PDF
Article Synopsis
  • The Marburg virus outbreak in Guinea and Ghana led to the formation of the MARVAC consortium, which includes experts focused on developing a vaccine.
  • They aim to create a rapid response to combat the threat posed by this infectious disease.
  • The discussion highlights the ongoing progress, the challenges faced in vaccine development, and potential future strategies for MARV vaccines.
View Article and Find Full Text PDF

Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb).

View Article and Find Full Text PDF

Monoclonal antibodies are an efficacious therapy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, rapid viral mutagenesis led to escape from most of these therapies, outlining the need for an antibody cocktail with a broad neutralizing potency. Using an unbiased interrogation of the memory B cell repertoire of patients with convalescent COVID-19, we identified human antibodies with broad antiviral activity in vitro and efficacy in vivo against all tested SARS-CoV-2 variants of concern, including Delta and Omicron BA.

View Article and Find Full Text PDF

Disease associated with Nipah virus infection causes a devastating and often fatal spectrum of syndromes predominated by both respiratory and neurologic conditions. Additionally, neurologic sequelae may manifest months to years later after virus exposure or apparent recovery. In the two decades since this disease emerged, much work has been completed in an attempt to understand the pathogenesis and facilitate development of medical countermeasures.

View Article and Find Full Text PDF
Article Synopsis
  • Ebola virus disease (EVD) has a case fatality rate of about 50% due to outbreaks in Africa, highlighting the need for effective countermeasures tested on nonhuman primate (NHP) models.
  • A study involving four rhesus macaques exposed to Ebola via aerosol revealed distinct disease stages: subclinical (high CO2 levels and lymphopenia), clinical (fever, viremia, and respiratory alkalosis), and decompensatory (coagulopathy, cytokine storms, liver and kidney injury), leading to shock and mortality.
  • The aerosol model showed differences in disease progression compared to intramuscular methods, including a longer subclinical phase and shorter clinical phase, which suggests that rapid identification of symptoms
View Article and Find Full Text PDF

Cellular binding and entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are mediated by its spike glycoprotein (S protein), which binds with not only the human angiotensin-converting enzyme 2 (ACE2) receptor but also glycosaminoglycans such as heparin. Cell membrane-coated nanoparticles ("cellular nanosponges") mimic the host cells to attract and neutralize SARS-CoV-2 through natural cellular receptors, leading to a broad-spectrum antiviral strategy. Herein, we show that increasing surface heparin density on the cellular nanosponges can promote their inhibition against SARS-CoV-2.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic demonstrates the importance of generating safe and efficacious vaccines that can be rapidly deployed against emerging pathogens. Subunit vaccines are considered among the safest, but proteins used in these typically lack strong immunogenicity, leading to poor immune responses. Here, a biomaterial COVID-19 vaccine based on a mesoporous silica rods (MSRs) platform is described.

View Article and Find Full Text PDF

Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. , we seek to determine the upper limits of early warning detection through physiological measurements.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed memory B cell receptors from 19 recovered COVID-19 patients and identified seven main groups of antibodies that target specific regions of the virus.
  • * Although some SARS-CoV-2 variants have evaded neutralization by many potent antibodies, certain antibodies still bind effectively, indicating that various components of the immune response contribute to long-term protection against evolving strains.
View Article and Find Full Text PDF

The clinical significance of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) RNA in stool remains uncertain. We found that extrapulmonary dissemination of infection to the gastrointestinal tract, assessed by the presence of SARS-CoV-2 RNA in stool, is associated with decreased coronavirus disease 2019 (COVID-19) survival. Measurement of SARS-CoV-2 RNA in stool may have utility for clinical risk assessment.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has affected more than 70 million people worldwide and resulted in over 1.5 million deaths. A broad deployment of effective immunization campaigns to achieve population immunity at global scale will depend on the biological and logistical attributes of the vaccine.

View Article and Find Full Text PDF

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coupled with a lack of therapeutics, has paralyzed the globe. Although significant effort has been invested in identifying antibodies that block infection, the ability of antibodies to target infected cells through Fc interactions may be vital to eliminate the virus. To explore the role of Fc activity in SARS-CoV-2 immunity, the functional potential of a cross-SARS-reactive antibody, CR3022, was assessed.

View Article and Find Full Text PDF

We report cellular nanosponges as an effective medical countermeasure to the SARS-CoV-2 virus. Two types of cellular nanosponges are made of the plasma membranes derived from human lung epithelial type II cells or human macrophages. These nanosponges display the same protein receptors, both identified and unidentified, required by SARS-CoV-2 for cellular entry.

View Article and Find Full Text PDF

Outbreaks of filoviruses, such as those caused by the Ebola (EBOV) and Marburg (MARV) virus, are difficult to detect and control. The initial clinical symptoms of these diseases are nonspecific and can mimic other endemic pathogens. This makes confident diagnosis based on clinical symptoms alone impossible.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the effects of aerosolized Lassa virus on macaques, revealing symptoms similar to severe human cases, such as fever and rapid heart rate, while highlighting changes in immune responses like increased activated monocytes and lymphocytopenia.
  • Findings from the macaque model aim to assist in the development of medical countermeasures for both Lassa fever in endemic regions and broader biodefense strategies, particularly since there is currently no approved vaccine for LASV.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session46i041lbf02ei7fsd0ihb9bouahtrf3v): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once