Molecularly imprinted polymers (MIPs) are artificially synthesized materials to mimic the molecular recognition process of biological macromolecules such as substrate-enzyme or antigen-antibody. The combination of these biomimetic materials with electrochemical techniques has allowed the development of advanced sensing devices, which significantly improve the performance of bare or catalyst-modified sensors, being able to unleash new applications. However, despite the high selectivity that MIPs exhibit, those can still show some cross-response towards other compounds, especially with chemically analogous (bio)molecules.
View Article and Find Full Text PDFThis manuscript presents a voltammetric biosensing study with use of molecularly imprinted polymers to detect histamine in wine. Polymer beads were synthesized by standard precipitation polymerization method and implemented on the electrode surface via sol-gel immobilization. Scanning and confocal microscopy examinations permitted characterizing the material.
View Article and Find Full Text PDFThe presented manuscript reports the simultaneous detection of a ternary mixture of the benzodiazepines diazepam, lorazepam, and flunitrazepam using an array of voltammetric sensors and the electronic tongue principle. The electrodes used in the array were selected from a set of differently modified graphite epoxy composite electrodes; specifically, six electrodes were used incorporating metallic nanoparticles of Cu and Pt, oxide nanoparticles of CuO and WO, plus pristine electrodes of epoxy-graphite and metallic Pt disk. Cyclic voltammetry was the technique used to obtain the voltammetric responses.
View Article and Find Full Text PDF