Publications by authors named "Anna Hermanns"

Methyl salicylate imparts a potent flavor and aroma described as medicinal and wintergreen that is undesirable in tomato (Solanum lycopersicum) fruit. Plants control the quantities of methyl salicylate through a variety of biosynthetic pathways, including the methylation of salicylic acid to form methyl salicylate and subsequent glycosylation to prevent methyl salicylate emission. Here, we identified a subclade of tomato methyl esterases, SALICYLIC ACID METHYL ESTERASE1-4, responsible for demethylation of methyl salicylate to form salicylic acid in fruits.

View Article and Find Full Text PDF

In biological discovery and engineering research, there is a need to spatially and/or temporally regulate transgene expression. However, the limited availability of promoter sequences that are uniquely active in specific tissue-types and/or at specific times often precludes co-expression of multiple transgenes in precisely controlled developmental contexts. Here, we developed a system for use in rice that comprises synthetic designer transcription activator-like effectors (dTALEs) and cognate synthetic TALE-activated promoters (STAPs).

View Article and Find Full Text PDF

Carotenoids, such as β-carotene, accumulate in chromoplasts of various fleshy fruits, awarding them with colors, aromas, and nutrients. The Orange (CmOr) gene controls β-carotene accumulation in melon fruit by posttranslationally enhancing carotenogenesis and repressing β-carotene turnover in chromoplasts. Carotenoid isomerase (CRTISO) isomerizes yellow prolycopene into red lycopene, a prerequisite for further metabolism into β-carotene.

View Article and Find Full Text PDF

Background: C1 substrates (such as formate and methanol) are promising feedstock for biochemical/biofuel production. Numerous studies have been focusing on engineering heterologous pathways to incorporate C1 substrates into biomass, while the engineered microbial hosts often demonstrate inferior fermentation performance due to substrate toxicity, metabolic burdens from engineered pathways, and poor enzyme activities. Alternatively, exploring native C1 pathways in non-model microbes could be a better solution to address these challenges.

View Article and Find Full Text PDF