Publications by authors named "Anna Guralnik"

IL-17-producing CD8 (Tc17) cells are enriched in active lesions of patients with multiple sclerosis (MS), suggesting a role in the pathogenesis of autoimmunity. Here we show that amelioration of MS by dimethyl fumarate (DMF), a mechanistically elusive drug, associates with suppression of Tc17 cells. DMF treatment results in reduced frequency of Tc17, contrary to Th17 cells, and in a decreased ratio of the regulators RORC-to-TBX21, along with a shift towards cytotoxic T lymphocyte gene expression signature in CD8 T cells from MS patients.

View Article and Find Full Text PDF

The T helper 9 (Th9) cell transcriptional network is formed by an equilibrium of signals induced by cytokines and antigen presentation. Here we show that, within this network, two interferon regulatory factors (IRF), IRF1 and IRF4, display opposing effects on Th9 differentiation. IRF4 dose-dependently promotes, whereas IRF1 inhibits, IL-9 production.

View Article and Find Full Text PDF

Robust cytotoxic CD8(+) T-cell response is important for immunity to intracellular pathogens. Here, we show that the transcription factor IFN Regulatory Factor 4 (IRF4) is crucial for the protective CD8(+) T-cell response to the intracellular bacterium Listeria monocytogenes. IRF4-deficient (Irf4(-/-)) mice could not clear L.

View Article and Find Full Text PDF

Similar to T-helper (Th) cells, CD8(+) T cells also differentiate into distinct subpopulations. However, the existence of IL-9-producing CD8(+) T (Tc9) cells has not been elucidated so far. We show that murine CD8(+) T cells activated in the presence of IL-4 plus TGF-β develop into transient IL-9 producers characterized by specific IFN-γ and IL-10 expression patterns as well as by low cytotoxic function along with diminished expression of the CTL-associated transcription factors T-bet and Eomesodermin.

View Article and Find Full Text PDF

IL-17-producing CD8+ T (Tc17) cells are detectible in multiple sclerosis (MS) lesions; however, their contribution to the disease is unknown. To identify functions of Tc17 cells, we induced EAE, a murine model of MS, in mice lacking IFN regulatory factor 4 (IRF4). IRF4-deficient mice failed to generate Tc17 and Th17 cells and were resistant to EAE.

View Article and Find Full Text PDF

Apart from conventional CD4(+) Th17 cells, the cytokines IL-17A and IL-22 can also be produced by γδ T cells, NK cells and lymphoid tissue inducer (LTi) cells. Th17 cells develop from precursor cells after T-cell receptor stimulation in the presence of TGF-β, IL-6 and IL-23. In contrast, a subset of γδ T cells ("γδT17") is committed for fast IL-17 production already in the thymus; however, γδ T cells can also produce IL-17 after prolonged in vitro stimulation via their γδ T-cell receptor plus IL-23.

View Article and Find Full Text PDF

Activation of naive CD8(+) T cells with antigen in the absence of skewing cytokines triggers their differentiation into effector CTL, which induces death of target cells. We show that CD8(+) T cells activated in the presence of the cytokines IL-6 or IL-21 plus TGF-beta similar to CD4(+) T cells, develop into IL-17-producing (Tc17) cells. These cells display greatly suppressed cytotoxic function along with low levels of the CTL markers: T-box transcription factor Eomesodermin, granzyme B and IFN-gamma.

View Article and Find Full Text PDF

Differentiation of murine T-helper (Th) 17 cells is induced by antigenic stimulation and the sequential action of the cytokines IL-6, IL-21, and IL-23, along with TGFbeta. Current dogma proposes that IL-6 induces IL-21, which, in a STAT3-dependent manner, amplifies its own transcription, contributes to IL-17 production, and, moreover, promotes the expression of the IL-23 receptor. This, in turn, prepares cells for IL-23-mediated stabilization of the Th17 phenotype.

View Article and Find Full Text PDF

Regulatory CD4+ T cells are important for the homeostasis of the immune system and their absence correlates with autoimmune disorders. Here, we investigate the capacity of IL-27, a cytokine with pro- and anti-inflammatory properties, to regulate the generation of transforming growth factor beta (TGFbeta)-inducible forkhead box P3 (Foxp3)-positive regulatory T (Treg) cells. Our results demonstrate that IL-27 inhibits the acquisition of the Treg phenotype at the level of Foxp3, CD25 and CTLA-4 (CD152) expression as well as the suppressive function.

View Article and Find Full Text PDF