Natriuretic peptides (NPs) are cardio-derived hormones that have a crucial role in maintaining cardiovascular homeostasis. Physiological effects of NPs are mediated by binding to natriuretic peptide receptors 1 and 2 (NPR1/2), whereas natriuretic peptide receptor 3 (NPR3) acts as a clearance receptor that removes NPs from the circulation. Mouse studies have shown that local NP-signaling in the kidney glomerulus is important for the maintenance of renal homeostasis.
View Article and Find Full Text PDFWe hypothesized that patients with chronic kidney disease (CKD) display an altered plasma amino acid (AA) metabolomic profile that could contribute to abnormal vascular maintenance of peripheral circulation in uremia. The relationships between plasma AAs and endothelial and vascular smooth muscle function in the microcirculation of CKD patients are not well understood. The objective of this study is to investigate to what extent the levels of AAs and its metabolites are changed in CKD patients and to test their relationship with endothelial and vascular smooth muscle function.
View Article and Find Full Text PDFKidney disease is a complex disease with several different etiologies and underlying associated pathophysiology. This is reflected by the lack of effective treatment therapies in chronic kidney disease (CKD) that stop disease progression. However, novel strategies, recent scientific breakthroughs, and technological advances have revealed new possibilities for finding novel disease drivers in CKD.
View Article and Find Full Text PDFAll capillary endothelia, including those of the glomeruli, have a luminal cell surface layer (ESL) consisting of glycoproteins, glycolipids, proteoglycans (PGs) and glycosaminoglycans. Previous results have demonstrated that an intact ESL is necessary for a normal filtration barrier and damage to the ESL coupled to proteinuria is seen for example in diabetic kidney disease (DKD). We used the principles of ion exchange chromatography in vivo to elute the highly negatively charged components of the ESL with a 1 M NaCl solution in rats.
View Article and Find Full Text PDFThe hyaluronan-rich pericellular matrix (PCM) plays physical and chemical roles in biological processes ranging from brain plasticity, to adhesion-dependent phenomena such as cell migration, to the onset of cancer. This study investigates how the spatial distribution of the large negatively charged bottlebrush proteoglycan, aggrecan, impacts PCM morphology and cell surface access. The highly localized pericellular milieu limits transport of nanoparticles in a size-dependent fashion and sequesters positively charged molecules on the highly sulfated side chains of aggrecan.
View Article and Find Full Text PDFDrugs containing adrenocorticotropic hormone have been used as therapy for patients with nephrotic syndrome. We have previously shown that adrenocorticotropic hormone and a selective agonist for the melanocortin 1 receptor (MC1R) exert beneficial actions in experimental membranous nephropathy with reduced proteinuria, reduced oxidative stress, and improved glomerular morphology and function. Our hypothesis is that MC1R activation in podocytes elicits beneficial effects by promoting stress fibers and maintaining podocyte viability.
View Article and Find Full Text PDFNephrotic syndrome, characterized by massive proteinuria, is caused by a large group of diseases including membranous nephropathy (MN) and focal segmental glomerulosclerosis (FSGS). Although the underlying mechanisms are beginning to unravel, therapy is unspecific and far from efficient. It has been suggested that adrenocorticotropic hormone (ACTH) has beneficial effects in patients with MN and possibly in other nephrotic diseases.
View Article and Find Full Text PDFA voluminous polymer coat adorns the surface of many eukaryotic cells. Although the pericellular matrix (PCM) often extends several microns from the cell surface, its macromolecular structure remains elusive. This massive cellular organelle negotiates the cell's interaction with surrounding tissue, influencing important processes such as cell adhesion, mitosis, locomotion, molecular sequestration, and mechanotransduction.
View Article and Find Full Text PDFMesangial matrix expansion is a prominent feature of the most common form of glomerulonephritis, IgA nephropathy (IgAN). To find molecular markers and improve the understanding of the disease, the gene and protein expression of proteoglycans were investigated in biopsies from IgAN patients and correlated to clinical and morphological data. We collected and microdissected renal biopsies from IgAN patients (n = 19) and from healthy kidney donors (n = 14).
View Article and Find Full Text PDFBackground: The liver is considered a tolerogenic organ that favors the induction of peripheral tolerance and protects other organs from the same donor from rejection. This has been exploited in combined auxiliary liver-kidney transplantation, where a renal graft is transplanted against a positive crossmatch under the protection of a liver transplanted from the same donor.
Methods: To elucidate mechanisms behind the liver protective effect, we studied early transcriptional changes of inflammatory mediators in the grafts during combined auxiliary liver-kidney transplantation using microarrays and real-time polymerase chain reaction.
Am J Physiol Renal Physiol
October 2010
The molecular mechanisms behind acquired nephrotic syndrome (NS) are still largely unknown. One possible explanation for the development of proteinuria is oxidative damage to the glomerular cells. Our hypothesis was that the oxidative defense is weakened in NS, and we focused on measurements of the oxidative-antioxidative status in the glomerular and tubular parts of the nephron.
View Article and Find Full Text PDFMembranous nephropathy is one of the most common causes of nephrotic syndrome in adults. Recent reports suggest that treatment with adrenocorticotropic hormone (ACTH) reduces proteinuria, but the mechanism of action is unknown. Here, we identified gene expression of the melanocortin receptor MC1R in podocytes, glomerular endothelial cells, mesangial cells, and tubular epithelial cells.
View Article and Find Full Text PDFBackground: To facilitate in the identification of gene products important in regulating renal glomerular structure and function, we have produced an annotated transcriptome database for normal human glomeruli using the SAGE approach.
Description: The database contains 22,907 unique SAGE tag sequences, with a total tag count of 48,905. For each SAGE tag, the ratio of its frequency in glomeruli relative to that in 115 non-glomerular tissues or cells, a measure of transcript enrichment in glomeruli, was calculated.