Publications by authors named "Anna Godi"

Article Synopsis
  • Researchers classified Human Papillomavirus (HPV) types into lineages and sublineages based on their whole genome sequences.
  • They examined antibodies produced after natural infections with different HPV variants (specifically oncogenic types) using serum samples from women in various global regions.
  • The study found that antibodies showed varying recognition of lineage-specific antigens, suggesting that some HPV lineages may be antigenically distinct, indicating a more complex immune response to these infections than previously understood.
View Article and Find Full Text PDF

A variety of techniques are available to estimate the level of antibodies present in human serum samples. Such tests are highly specific and are used to determine prior exposure to a pathogen or to estimate the magnitude, breadth and durability of individual and population level vaccine immunity. Multiplex (or multi-analyte) platforms are increasingly being used to evaluate immune responses against multiple antigens at the same time, usually at reduced per sample cost and a more efficient use of available samples.

View Article and Find Full Text PDF

Human papillomavirus (HPV) is the causative agent of cervical and other cancers and represents a significant global health burden. HPV vaccines demonstrate excellent efficacy in clinical trials and effectiveness in national immunization programmes against the most prevalent genotype, HPV16. It is unclear whether the greater protection conferred by vaccine-induced antibodies, compared to natural infection antibodies, is due to differences in antibody magnitude and/or specificity.

View Article and Find Full Text PDF

Human Papillomavirus (HPV) bivalent (Cervarix®) and quadrivalent (Gardasil®) vaccines demonstrate robust efficacy against vaccine types and cross-protection against related non-vaccine types. Here we evaluate the breadth, magnitude and durability of the vaccine-induced antibody response against vaccine (HPV6/11/16/18) and non-vaccine (HPV31/33/45/52/58) type antigens up to 7 years following vaccination of 12-15 year old girls in a three dose schedule and contrast these data with the levels of antibody typically seen in natural infection. Vaccine-type antibody levels waned over the 7-year follow up period but remained at least an order of magnitude above the typical antibody levels elicited by natural infection.

View Article and Find Full Text PDF

Human papillomavirus (HPV) is the causative agent of cervical and other epithelial cancers. Naturally occurring variants of HPV have been classified into lineages and sublineages based on their whole-genome sequences, but little is known about the impact of this diversity on the structure and function of viral gene products. The HPV capsid is an icosahedral lattice comprising 72 pentamers of the major capsid protein (L1) and the associated minor capsid protein (L2).

View Article and Find Full Text PDF

Natural variants of human papillomavirus (HPV) are classified into lineages and sublineages based upon whole-genome sequence, but the impact of diversity on protein function is unclear. We investigated the susceptibility of 3-8 representative pseudovirus variants of HPV16, HPV18, HPV31, HPV33, HPV45, HPV52, and HPV58 to neutralization by nonavalent vaccine (Gardasil®9) sera. Many variants demonstrated significant differences in neutralization sensitivity from their consensus A/A1 variant but these were of a low magnitude.

View Article and Find Full Text PDF

Bivalent (Cervarix®) and quadrivalent (Gardasil®) Human Papillomavirus (HPV) vaccines demonstrate remarkable efficacy against the targeted genotypes, HPV16 and HPV18, but also a degree of cross-protection against non-vaccine incorporated genotypes, HPV31 and HPV45. These outcomes seem to be supported by observations that the HPV vaccines induce high titer neutralizing antibodies against vaccine types and lower responses against non-vaccine types. Few data are available on the robustness of the immune response against non-vaccine types.

View Article and Find Full Text PDF

We investigated the impact of naturally occurring variation within the major (L1) and minor (L2) capsid proteins on the antigenicity of human papillomavirus (HPV) type 52 (HPV52). L1L2 pseudoviruses (PsVs) representing HPV52 lineage and sublineage variants A1, A2, B1, B2, C and D were created and tested against serum from naturally infected individuals, preclinical antisera raised against HPV52 A1 and D virus-like particles (VLPs) and neutralising monoclonal antibodies (MAbs) raised against HPV52 A1 VLP. HPV52 lineage D PsV displayed a median 3.

View Article and Find Full Text PDF

Background: Naturally occurring variants of human papillomavirus (HPV) 58 have been defined as lineages and sublineages but little is known about the impact of this diversity on protein function. We investigated the impact of variation within the major (L1) and minor (L2) capsid proteins of HPV58 on susceptibility to neutralizing antibodies.

Methods: Pseudovirus (PsV) representing A1, A2, A3, B1, B2, C, D1, and D2 variants were evaluated for their susceptibility to antibodies elicited during natural infection, preclinical antisera generated against virus-like particles, and monoclonal antibodies (MAbs).

View Article and Find Full Text PDF

Human papillomavirus (HPV) vaccination elicits high-titer genotype-specific antibody responses that are associated with a reduced risk of cervical disease caused by vaccine-incorporated genotypes. Our objective was to evaluate dried blood spots (DBSs) and oral mucosal transudate (OMT) as alternative samples to serum to confirm HPV vaccine antibody status. A study was carried out to evaluate the feasibility of detecting HPV16 and HPV18 antibodies in OMT, DBSs, and sera among women who self-reported being unvaccinated or fully vaccinated with the HPV vaccine.

View Article and Find Full Text PDF

We investigated naturally occurring variation within the major (L1) and minor (L2) capsid proteins of human papillomavirus (HPV) genotype 33. Pseudoviruses (PsV) representing HPV33 lineages A1, A2, A3, B and C exhibited comparable particle-to-infectivity ratios and morphology but demonstrated a decreased sensitivity (A2, A3, B and C) to cross-neutralization by HPV vaccine antibodies compared to the A1 sublineage. Chimeric PsVs demonstrated that these differences in sensitivity were due to polymorphisms in the L1 protein, with little or no influence from variation within the L2 protein.

View Article and Find Full Text PDF

Background: Human papillomavirus vaccines have demonstrated remarkable efficacy against persistent infection and disease associated with vaccine-incorporated genotypes and a degree of efficacy against some genetically related, non-vaccine-incorporated genotypes. The vaccines differ in the extent of cross-protection against these non-vaccine genotypes. Data supporting the role for neutralizing antibodies as a correlate or surrogate of cross-protection are lacking, as is a robust assessment of the seroconversion rates against these non-vaccine genotypes.

View Article and Find Full Text PDF

The human papillomavirus (HPV) vaccines consist of major capsid protein (L1) virus-like particles (VLP) and are highly efficacious against the development of cervical cancer precursors attributable to oncogenic genotypes, HPV16 and HPV18. A degree of vaccine-induced cross-protection has also been demonstrated against genetically-related genotypes in the Alpha-7 (HPV18-like) and Alpha-9 (HPV16-like) species groups which is coincident with the detection of L1 cross-neutralising antibodies. In this study the L1 domains recognised by inter-genotype cross-neutralising antibodies were delineated.

View Article and Find Full Text PDF

We investigated naturally occurring variation within the major (L1) and minor (L2) capsid proteins of human papillomavirus genotype 45 (HPV45). Pseudoviruses (PsVs) representing HPV45 sublineages A1, A2, A3, B1, and B2 exhibited comparable particle-to-infectivity ratios and morphologies but demonstrated both increased (A2, A3, and B1) and decreased (B2) sensitivities to cross-neutralization by HPV vaccine antibodies compared to that of the A1 sublineage. Mutant PsVs identified HI loop residue 357 as being critical for conferring this differential sensitivity.

View Article and Find Full Text PDF

Background: Human papillomavirus (HPV) vaccines confer protection against the oncogenic genotypes HPV16 and HPV18 through the generation of type-specific neutralizing antibodies raised against virus-like particles (VLP) representing these genotypes. The vaccines also confer a degree of cross-protection against HPV31 and HPV45, which are genetically-related to the vaccine types HPV16 and HPV18, respectively, although the mechanism is less certain. There are a number of humoral immune measures that have been examined in relation to the HPV vaccines, including VLP binding, pseudovirus neutralization and the enumeration of memory B cells.

View Article and Find Full Text PDF

Unlabelled: We investigated naturally occurring variation within the major (L1) and minor (L2) capsid proteins of oncogenic human papillomavirus (HPV) genotype 31 (HPV31) to determine the impact on capsid antigenicity. L1L2 pseudoviruses (PsVs) representing the three HPV31 variant lineages, variant lineages A, B, and C, exhibited comparable particle-to-infectivity ratios and morphologies. Lineage-specific L1L2 PsVs demonstrated subtle differences in susceptibility to neutralization by antibodies elicited following vaccination or preclinical L1 virus-like particle (VLP) immunization or by monoclonal antibodies; however, these differences were generally of a low magnitude.

View Article and Find Full Text PDF

Persistent infection with oncogenic human papillomavirus (HPV) is a prerequisite for cervical disease development, yet data regarding the host immune response to infection at the genotype level are quite limited. We created pseudoviruses bearing the major (L1) and minor (L2) capsid proteins and L1 virus-like particles representing the reference sequence and a consensus of 34 European sequences of HPV51. Despite the formation of similarly sized particles, motifs in the reference L1 and L2 genes had a profound impact on the immunogenicity, antigenicity and infectivity of these antigens.

View Article and Find Full Text PDF

Human papillomavirus (HPV) vaccines confer protection against the oncogenic genotypes HPV16 and HPV18 through the generation of type-specific neutralizing antibodies raised against the constituent virus-like particles (VLP) based upon the major capsid proteins (L1) of these genotypes. The vaccines also confer a degree of cross-protection against some genetically related types from the Alpha-9 (HPV16-like: HPV31, HPV33, HPV35, HPV52, HPV58) and Alpha-7 (HPV18-like: HPV39, HPV45, HPV59, HPV68) species groups. The mechanism of cross-protection is unclear but may involve antibodies capable of recognizing shared inter-genotype epitopes.

View Article and Find Full Text PDF

Background: Persistent infection with oncogenic Human Papillomavirus (HPV) is associated with the development of cervical cancer with each genotype differing in their relative contribution to the prevalence of cervical disease. HPV DNA testing offers improved sensitivity over cytology testing alone but is accompanied by a generally low specificity. Potential molecular markers of cervical disease include type-specific viral load (VL), integration of HPV DNA into the host genome and methylation of the HPV genome.

View Article and Find Full Text PDF

Objective: Certain intra-type variants of HPV16 have been shown to be associated with an increased risk of developing high grade cervical disease, but their potential association is confounded by apparent geographic and phylogenetic lineage dependency. The objective of this study was to evaluate the relationship between HPV16 sequence variants and cervical disease stage in monospecific infection samples from a single lineage (European, EUR) in England.

Methods: One hundred and twelve women singly infected with HPV16 and displaying normal and abnormal cytology grades were selected.

View Article and Find Full Text PDF

The highly efficacious human papillomavirus (HPV) vaccines contain virus-like particles (VLP) representing genotypes HPV16 and HPV18, which together account for approximately 70% of cervical cancer cases. Vaccine-type protection is thought to be mediated by high titer, type-specific neutralizing antibodies. The vaccines also confer a degree of cross-protection against some genetically-related types from the Alpha-9 (HPV16-like: HPV31, HPV33, HPV35, HPV52, HPV58) and Alpha-7 (HPV18-like: HPV39, HPV45, HPV59, HPV68) species groups.

View Article and Find Full Text PDF

Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P(2)) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function.

View Article and Find Full Text PDF

Background: Tumor cells can move in a three-dimensional (3D) environment in either mesenchymal-type or amoeboid modes. In mesenchymal-type movement, cells have an elongated morphology with Rac-induced protrusions at the leading edge. Amoeboid cells have high levels of actomyosin contractility, and movement is associated with deformation of the cell body through the matrix without proteolysis.

View Article and Find Full Text PDF

The molecular machinery responsible for the generation of transport carriers moving from the Golgi complex to the plasma membrane relies on a tight interplay between proteins and lipids. Among the lipid-binding proteins of this machinery, we previously identified the four-phosphate adaptor protein FAPP2, the pleckstrin homology domain of which binds phosphatidylinositol 4-phosphate and the small GTPase ARF1. FAPP2 also possesses a glycolipid-transfer-protein homology domain.

View Article and Find Full Text PDF

The phosphorylated derivatives of phosphatidylinositol (PtdIns), known as the polyphosphoinositides (PIs), represent key membrane-localized signals in the regulation of fundamental cell processes, such as membrane traffic and cytoskeleton remodelling. The reversible production of the PIs is catalyzed through the combined activities of a number of specific phosphoinositide phosphatases and kinases that can either act separately or in concert on all the possible combinations of the 3, 4, and 5 positions of the inositol ring. So far, seven distinct PI species have been identified in mammalian cells and named according to their site(s) of phosphorylation: PtdIns 3-phosphate (PI3P); PtdIns 4-phosphate (PI4P); PtdIns 5-phosphate (PI5P); PtdIns 3,4-bisphosphate (PI3,4P2); PtdIns 4,5-bisphosphate (PI4,5P2); PtdIns 3,5-bisphosphate (PI3,5P2); and PtdIns 3,4,5-trisphosphate (PI3,4,5P3).

View Article and Find Full Text PDF