Objective: We test whether the specialized pro-resolving molecule Maresin 1 (MaR1) attenuates nociceptive behaviors in mice with osteoarthritis-like pain.
Design: Osteoarthritis (OA)-like pain behavior was induced by intra-articular injection of monosodium iodoacetate (MIA) and treated with MaR1 (N=6) or vehicle (N=5) by intraperitoneal injection 8 weeks after injury. Mice without MIA injection were used as control (N=6).
Joint diseases, such as osteoarthritis, often require delivery of drugs to chondrocytes residing within the cartilage. However, intra-articular delivery of drugs to cartilage remains a challenge due to their rapid clearance within the joint. This problem is further exacerbated by the dense and negatively charged cartilage extracellular matrix (ECM).
View Article and Find Full Text PDFThe terminal protein in the complement cascade C5a is a potent inflammatory molecule and chemoattractant that is involved in the pathology of multiple inflammatory diseases including sepsis and arthritis, making it a promising protein to target with immunotherapies. Active immunotherapies, in which patients are immunized against problematic self-molecules and generate therapeutic antibodies as a result, have received increasing interest as an alternative to traditional monoclonal antibody treatments. In previous work, we have designed supramolecular self-assembling peptide nanofibers as active immunotherapies with defined combinations of B- and T-cell epitopes.
View Article and Find Full Text PDFThe gas exchange units of the lung, the alveoli, are mechanically active and undergo cyclic deformation during breathing. The epithelial cells that line the alveoli contribute to lung function by reducing surface tension surfactant secretion, which is highly influenced by the breathing-associated mechanical cues. These spatially heterogeneous mechanical cues have been linked to several physiological and pathophysiological states.
View Article and Find Full Text PDFAdv Healthc Mater
December 2021
Convergent advances in the field of soft matter, macromolecular chemistry, and engineering have led to the development of biomaterials that possess autonomous, adaptive, and self-healing characteristics similar to living systems. These rationally designed biomaterials can surpass the capabilities of their parent material. Herein, the modification of hyaluronic acid (HA) to exhibit self-healing properties is described, and its physical and biological function both in vitro and in vivo is studied.
View Article and Find Full Text PDFBiomed Res Int
February 2018
As the gap between donors and patients in need of an organ transplant continues to widen, research in regenerative medicine seeks to provide alternative strategies for treatment. One of the most promising techniques for tissue and organ regeneration is decellularization, in which the extracellular matrix (ECM) is isolated from its native cells and genetic material in order to produce a natural scaffold. The ECM, which ideally retains its inherent structural, biochemical, and biomechanical cues, can then be recellularized to produce a functional tissue or organ.
View Article and Find Full Text PDF