Publications by authors named "Anna G Monteduro"

This paper presents a comprehensive study of hydrogenated amorphous silicon (a-Si)-based detectors, utilizing electrical characterization, Raman spectroscopy, photoemission, and inverse photoemission techniques. The unique properties of a-Si have sparked interest in its application for radiation detection in both physics and medicine. Although amorphous silicon (a-Si) is inherently a highly defective material, hydrogenation significantly reduces defect density, enabling its use in radiation detector devices.

View Article and Find Full Text PDF

This work aimed to evaluate the potential of the nanosystems constituted by dopamine (DA) and the antioxidant Citicoline (CIT) co-loaded in solid lipid nanoparticles (SLNs) for intranasal administration in the treatment of Parkinson disease (PD). Such nanosystems, denoted as DA-CIT-SLNs, were designed according to the concept of multifunctional nanomedicine where multiple biological roles are combined into a single nanocarrier and prepared by the melt emulsification method employing the self-emulsifying Gelucire 50/13 as lipid matrix. The resulting DA-CIT-SLNs were characterized regarding particle size, surface charge, encapsulation efficiency, morphology, and physical stability.

View Article and Find Full Text PDF

Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features.Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC).

View Article and Find Full Text PDF

Background: The increasing use of complex and high dose-rate treatments in radiation therapy necessitates advanced detectors to provide accurate dosimetry. Rather than relying on pre-treatment quality assurance (QA) measurements alone, many countries are now mandating the use of in vivo dosimetry, whereby a dosimeter is placed on the surface of the patient during treatment. Ideally, in vivo detectors should be flexible to conform to a patient's irregular surfaces.

View Article and Find Full Text PDF

. Microbeam radiation therapy (MRT) is an alternative emerging radiotherapy treatment modality which has demonstrated effective radioresistant tumour control while sparing surrounding healthy tissue in preclinical trials. This apparent selectivity is achieved through MRT combining ultra-high dose rates with micron-scale spatial fractionation of the delivered x-ray treatment field.

View Article and Find Full Text PDF

Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings.

View Article and Find Full Text PDF

The removal of pollutants, such as heavy metals, aromatic compounds, dyes, pesticides and pharmaceuticals, from water is still an open challenge. Many methods have been developed and exploited for the purification of water from contaminants, including photocatalytic degradation, biological treatment, adsorption and chemical precipitation. Absorption-based techniques are still considered among the most efficient and commonly used approaches thanks to their operational simplicity.

View Article and Find Full Text PDF

In this work, we report the parametric optimization of surface acoustic wave (SAW) delay lines on Lithium niobate for environmental monitoring applications. First, we show that the device performance can be improved by acting opportunely on geometrical design parameters of the interdigital transducers such as the number of finger pairs, the finger overlap length and the distance between the emitter and the receiver. Then, the best-performing configuration is employed to realize SAW sensors.

View Article and Find Full Text PDF

The growing interest in piezoresistive sensors has favored the development of numerous approaches and materials for their fabrication. Within this framework, carbon nanotubes (CNTs) are often employed. However, CNTs are a heterogeneous material with different morphological characteristics in terms of length and diameter, and, so far, experimental studies have not usually considered the effect of these parameters on the final sensor performances.

View Article and Find Full Text PDF

In this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focused on developing citicoline-loaded solid lipid nanoparticles (CIT-SLNs) to improve the treatment of Parkinson's disease due to the drug's positive effects on neurodegenerative conditions.
  • - CIT-SLNs were created using Gelucire 50/13 as a lipid matrix, and various analyses (FT-IR, DSC, and XRPD) confirmed their solid-state properties, including a nano size and high drug entrapment.
  • - Results showed that CIT-SLNs significantly protected dopaminergic cells from the neurotoxin 6-hydroxydopamine, improving cell viability and maintaining normal cell structure, suggesting they offer better protection than free citicoline.
View Article and Find Full Text PDF

The development of highly sensitive, portable and low-cost sensors for the evaluation of ethanol content in liquid is particularly important in several monitoring processes, from the food industry to the pharmaceutical industry. In this respect, we report the optimization of two sensing approaches based on electrical impedance spectroscopy (EIS) and complementary double split ring resonators (CDSRRs) for the detection of ethanol in water. Miniaturized EIS sensors were realized with interdigitated electrodes, and the ethanol sensing was carried out in liquid solutions without any functionalization of the electrodes.

View Article and Find Full Text PDF

Magnetic iron oxide nanoparticles have been extensively investigated due to their applications in various fields such as biomedicine, sensing, and environmental remediation. However, they need to be coated with a suitable material in order to make them biocompatible and to add new functionalities on their surface. This review is intended to give a comprehensive overview of recent advantages and applications of iron oxide nanoparticles coated by polydopamine film.

View Article and Find Full Text PDF

The Grapevine leafroll-associated virus 3 (GLRaV-3) and the Grapevine fanleaf virus (GFLV) are pathogens reported in many grapevine-growing areas all over the world, main causal agents of grapevine leafroll disease and grapevine fanleaf disease, respectively. Prevention of virus spread thanks to rapid diagnosis of infected plants is a key factor for control of both diseases. Although serological (e.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a highly lethal cancer, and although a few drugs are available for treatment, therapeutic effectiveness is still unsatisfactory. New drugs are urgently needed for hepatocellular carcinoma (HCC) patients. In this context, reliable preclinical assays are of paramount importance to screen the effectiveness of new drugs and, in particular, measure their effects on HCC cell proliferation.

View Article and Find Full Text PDF

Hypothesis: Nanocarbon/polymeric 3D porous composites have been widely developed as piezoresistive sensors due to their improved performances. Functionalized nanocarbon is usually used to allow its adsorption on the surface of porous polymeric material. However, both the functionalization and the surface localized distribution of the nanomaterial can limit the nanocarbon effect on conductivity and mechanical stability of the material thus affecting piezoresistive performances.

View Article and Find Full Text PDF

Human activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, "early detection" in combination with "fast, accurate, and cheap" diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face.

View Article and Find Full Text PDF

The loss of nigrostriatal neurons containing dopamine (DA) together with the "mitochondrial dysfunction" in midbrain represent the two main causes related to the symptoms of Parkinson's disease (PD). Hence, the aim of this investigation is to co-administer the missing DA and the antioxidant grape seed-derived proanthocyanidins (grape seed extract, GSE) in order to increase the levels of the neurotransmitter (which is unable to cross the Blood Brain Barrier) and reducing the oxidative stress (OS) related to PD, respectively. For this purpose, we chose Solid Lipid Nanoparticles (SLN), because they have been already proven to increase DA uptake in the brain.

View Article and Find Full Text PDF

Sustainable growth, environmental preservation, and improvement of life quality are strategic fields of worldwide interest and cornerstones of international policies. Humanity health and prosperity are closely related to our present choices on sustainable development. The main sources of pollution concern industry, including mining, chemical companies, and refineries, wastewater treatment; and consumers themselves.

View Article and Find Full Text PDF
Article Synopsis
  • Nanocrystals (NCs) of F, In-codoped CdO (FICO) exhibit localized surface plasmon resonance (LSPR) in the near-infrared (NIR) range, making them ideal for next-generation electrochromic "smart windows."
  • By adjusting dopant concentrations in FICO NCs, researchers can fine-tune the LSPR, leading to highly transparent mesoporous thin films that maintain optimal optical and electrical properties without scattering.
  • These FICO NC-based films can dynamically control LSPR frequencies through electrochemical doping, allowing for selective regulation of NIR light transmittance, which can significantly reduce solar heat gain while preserving visible light clarity.
View Article and Find Full Text PDF

Herein we present a straightforward approach for the use of polydopamine (PDA) in adsorption of heavy metals from aqueous solutions. This is achieved by fabricating a healthy and environmentally friendly polydimethylsiloxane (PDMS) foam with a mussel inspired PDA layer deposited on the surface. Critical adsorption parameters (pH, temperature and PDA thickness) are optimized by the application of experimental design methodology.

View Article and Find Full Text PDF

Colloidal lithography is an innovative fabrication technique employing spherical, nanoscale crystals as a lithographic mask for the low cost realization of nanoscale patterning. The features of the resulting nanostructures are related to the particle size, deposition conditions and interactions involved. In this work, we studied the absorption of polystyrene spheres onto a substrate and discuss the effect of particle-substrate and particle-particle interactions on their organization.

View Article and Find Full Text PDF

Energy efficient, low-cost, user-friendly, and green methods for the removal of toxic phenolic compounds from aqueous solution are necessary for waste treatment in industrial applications. Herein we present an interesting approach for the utilization of oxidized carbon nanotubes (CNTs) in the removal of phenolic compounds from aqueous solution. Dried pristine CNTs were stably incorporated in a solid porous support of polydimethylsiloxane (PDMS) facilitating the handling during both oxidation process of the nanomaterial and uptake of phenolic compounds, and enabling their safe disposal, avoiding expensive post-treatment processes.

View Article and Find Full Text PDF

Functional, flexible, and integrated lab-on-chips, based on elastic membranes, are capable of fine response to external stimuli, so to pave the way for many applications as multiplexed sensors for a wide range of chemical, physical and biomedical processes. Here, we report on the use of elastic thin membranes (TMs), integrated with a reaction chamber, to fabricate a membrane-based pressure sensor (MePS) for reaction monitoring. In particular, the TM becomes the key-element in the design of a highly sensitive MePS capable to monitor gaseous species production in dynamic and temporally fast processes with high resolution and reproducibility.

View Article and Find Full Text PDF

Mixed iron-manganese oxide nanoparticles, synthesized by a simple procedure, were used to remove nickel ion from aqueous solutions. Nanostructures, prepared by using different weight percents of manganese, were characterized by transmission electron microscopy, selected area diffraction, X-ray diffraction, Raman spectroscopy, and vibrating sample magnetometry. Adsorption/desorption isotherm curves demonstrated that manganese inclusions enhance the specific surface area three times and the pores volume ten times.

View Article and Find Full Text PDF