Several cell lineages migrate through the developing and adult tissues of our bodies utilising a variety of modes of motility to suit the different substrates and environments they encounter en route to their destinations. Here we describe a novel adhesion-independent mode of single cell locomotion utilised by Drosophila fat body cells - the equivalent of vertebrate adipocytes. Like their human counterpart, these large cells were previously presumed to be immotile.
View Article and Find Full Text PDFDamage-associated molecular patterns (DAMPs) are molecules exposed or released by dead cells that trigger or modulate immunity and tissue repair. In vertebrates, the cytoskeletal component F-actin is a DAMP specifically recognised by DNGR-1, an innate immune receptor. Previously we suggested that actin is also a DAMP in by inducing STAT-dependent genes (
During the rapid inflammatory response to tissue damage, cells of the innate immune system are quickly recruited to the injury site. Once at the wound, innate immune cells perform a number of essential functions, such as fighting infection, clearing necrotic debris, and stimulating matrix deposition. In order to fully understand the diverse signaling events that regulate this immune response, it is crucial to observe the complex behaviors of (and interactions that occur between) multiple cell lineages in vivo, and in real-time, with the high spatio-temporal resolution.
View Article and Find Full Text PDFAdipocytes have many functions in various tissues beyond energy storage, including regulating metabolism, growth, and immunity. However, little is known about their role in wound healing. Here we use live imaging of fat body cells, the equivalent of vertebrate adipocytes in Drosophila, to investigate their potential behaviors and functions following skin wounding.
View Article and Find Full Text PDFDamage-associated molecular patterns (DAMPs) are molecules released by dead cells that trigger sterile inflammation and, in vertebrates, adaptive immunity. Actin is a DAMP detected in mammals by the receptor, DNGR-1, expressed by dendritic cells (DCs). DNGR-1 is phosphorylated by Src-family kinases and recruits the tyrosine kinase Syk to promote DC cross-presentation of dead cell-associated antigens.
View Article and Find Full Text PDFAims And Objectives: The aim was to describe the experience of living with varicose veins classified according CEAP (clinical class, aetiology, anatomy, pathophysiology) as C4 (eczema or thrombophlebitis) and management of the disease in daily life.
Background: Primary chronic venous insufficiencies with varicose veins are a relatively common condition among both men and women. Several studies have shown that quality of life improved after treatment of varicose veins compared to before treatment.
CP110 is a conserved centriole protein implicated in the regulation of cell division, centriole duplication, and centriole length and in the suppression of ciliogenesis. Surprisingly, we report that mutant flies lacking CP110 (CP110Δ) were viable and fertile and had no obvious defects in cell division, centriole duplication, or cilia formation. We show that CP110 has at least three functions in flies.
View Article and Find Full Text PDFCep135/Bld10 is a conserved centriolar protein required for the formation of the central cartwheel, an early intermediate in centriole assembly. Surprisingly, Cep135/Bld10 is not essential for centriole duplication in Drosophila, suggesting either that Cep135/Bld10 is not essential for cartwheel formation, or that the cartwheel is not essential for centriole assembly in flies. Using electron tomography and super-resolution microscopy we show that centrioles can form a cartwheel in the absence of Cep135/Bld10, but centriole width is increased and the cartwheel appears to disassemble over time.
View Article and Find Full Text PDFBackground: The clinical significance of viral load and co-infections in children with respiratory infections is not clear.
Objective: To evaluate the correlation of viral load as well as viral and bacterial co-infections with disease severity in hospitalized children with lower respiratory tract infections (LRTIs).
Study Design: This is a prospective study conducted in children admitted for LRTIs for two seasons.
In Caenorhabditis elegans, five proteins are required for centriole duplication: SPD-2, ZYG-1, SAS-5, SAS-6, and SAS-4. Functional orthologues of all but SAS-5 have been found in other species. In Drosophila melanogaster and humans, Sak/Plk4, DSas-6/hSas-6, and DSas-4/CPAP-orthologues of ZYG-1, SAS-6, and SAS-4, respectively-are required for centriole duplication.
View Article and Find Full Text PDFCentrosome amplification is a common feature of many cancer cells, and it has been previously proposed that centrosome amplification can drive genetic instability and so tumorigenesis. To test this hypothesis, we generated Drosophila lines that have extra centrosomes in approximately 60% of their somatic cells. Many cells with extra centrosomes initially form multipolar spindles, but these spindles ultimately become bipolar.
View Article and Find Full Text PDFThe yeast integral plasma membrane protein Ist2 belongs to a group of membrane proteins which are synthesized from localized mRNAs. The protein reaches the plasma membrane via the ER on a route operating independently of the classical secretory pathway. We have identified a complex peptide-sorting signal located at the extreme C-terminus.
View Article and Find Full Text PDF