Publications by authors named "Anna Florowska"

The aim of this study was to determine the effect of high hydrostatic pressure (HHP) induction parameters on the formation and properties of inulin-soy protein hydrogels. Solutions containing 20 g/100 g of inulin and 3 or 6 g/100 g of soy protein isolate (3 SPI; 6 SPI) were subjected to HHPs of 150, 300, or 500 MPa for 5, 10, or 20 min. The HHP parameters had no significant impact on the effectiveness of hydrogel formation.

View Article and Find Full Text PDF

Entrapping bioactive ingredients like elderberry extract in hydrogels improves their stability and functionality in food matrices. This study assessed the effect of sequential thermal treatment with ultrasound (US) or high hydrostatic pressure (HHP) and treatment duration on pea protein-psyllium hydrogels as elderberry extract carriers. Measurements included color parameters, extract entrapment efficiency, physical stability, textural properties, microrheology, FT-IR, thermal degradation (TGA), SEM images, total polyphenols content, antioxidant activity, and reducing power.

View Article and Find Full Text PDF

Food hydrogels, used as delivery systems for bioactive compounds, can be formulated with various food-grade biopolymers. Their industrial utility is largely determined by their physicochemical properties. However, comprehensive data on the properties of pea protein-psyllium binary hydrogels under different pH and ionic strength conditions are limited.

View Article and Find Full Text PDF

The aim of the study was to compare the properties of inulin hydrogels obtained with different methods, e.g., the traditional-thermal method and new, non-thermal methods, used in food production, like ultrasonic, high-pressure homogenization (HPH), and high hydrostatic pressures (HHPs).

View Article and Find Full Text PDF

Recently gels have gained significant attention in the food industry due to their unique properties and potential applications [...

View Article and Find Full Text PDF

Food hydrogels are biopolymeric materials made from food-grade biopolymers with gelling properties (proteins and polysaccharides) and a 3D network capable of incorporating large amounts of water. They have sparked considerable interest because of their potential and broad application range in the biomedical and pharmaceutical sectors. However, hydrogel research in the field of food science is still limited.

View Article and Find Full Text PDF

The aim of the study was to determine the influence of enriching liver sausages with different levels of walnut paste on the quality properties of this product. Sausages were produced with 5, 10, 15, 20, and 25% amount additions of walnut paste and without the addition of nuts (control product). It was found that walnut paste, especially when introduced at an amount >15%, was a component that limited thermal losses and significantly modified the characteristics of liver sausages.

View Article and Find Full Text PDF

The aim of this study was to conduct a comparative assessment of the structural and biomechanical properties of eight selected food-grade biopolymers (pea protein, wheat protein, gellan gum, konjac gum, inulin, maltodextrin, psyllium, and tara gum) as potential hydrogel building blocks. The prepared samples were investigated in terms of the volumetric gelling index, microrheological parameters, physical stability, and color parameters. Pea protein, gellan gum, konjac gum, and psyllium samples had high VGI values (100%), low solid−liquid balance (SLB < 0.

View Article and Find Full Text PDF

The aim of the study was to determine the effects of air relative humidity (RH: 60 and 80%) during the drying process of "krakowska sucha staropolska" (KSS) sausages on selected quality characteristics. The composition and production process of KSS sausages complied the requirements of traditional specialities guaranteed. It was found that the use of lower RH of drying air allowed a time reduction of 20%.

View Article and Find Full Text PDF

The purpose of this study was to investigate the influence of the addition of inulin (3%, 6% and 9%) to green tea-infused set type yoghurt on its sensory quality and physical properties. Yogurts were made by combining green tea with milk and inulin and inoculated with freeze-dried starter cultures YO-122. Incubation was conducted at 43 °C for approximately 4.

View Article and Find Full Text PDF

The aim of the study was to investigate the influence of addition of sodium alginate (SA) and chitosan (CH) on the properties of inulin hydrogels. Inulin hydrogels (20 g/100 g) containing various additions (0.0, 0.

View Article and Find Full Text PDF

The aim of this study was the evaluation of the influence of different HHP levels (150 and 300 MPa) and time treatment (5, 10, 20 min) on the gelation and properties of hydrogels with different inulin concentration (15, 20, 25 g/100 g). High-pressure treatment, in tested ranges, induces inulin gels and allows obtaining gel structures even at a lowest tested inulin content (i.e.

View Article and Find Full Text PDF

Set type yoghurts are characterised by a semi-solid texture, which is created during the fermentation process. The tea infusion in this type of yoghurt production can influence the quality of the final product. Therefore, the aim of the experiment was to evaluate the influence of the addition of 3, 6 and 9% inulin to oolong tea-infused yoghurts on the sensory quality.

View Article and Find Full Text PDF

In the present study, the potential to design natural tea-infused set yoghurt was investigated. Three types of tea (): black, green and oolong tea as well as lemon balm ( L.) were used to produce set yoghurt.

View Article and Find Full Text PDF

The aim of the study was to determine the effects of pea and soy protein addition (1, 3, 6 g/100 g) on inulin hydrogels properties. Inulin hydrogels (20 g/100 g) were obtained by thermal induction. It was stated that tested plant protein might be used as a modifier of inulin hydrogels properties.

View Article and Find Full Text PDF

The aim of the study was to examine and compare oxidative stability of refined (peanut, corn, rice bran, grapeseed, and rapeseed) oils. The oils were subject a Schaal Oven Test (temperature 63 ± 1 °C) and a Rancimat test (temperature 120 °C) and their stability was compared at the 1st and 12th month of storage. Changes in the peroxide (PV) and anisidine (AnV) values in the thermostat test were the fastest in rapeseed oil and grapeseed oil.

View Article and Find Full Text PDF

Background: Oxidative stability means resistance to oxidation during purchase, processing and storage and is a key quality indicator of edible fats. Oils ought to be stored in dark-glass bottles, at low temperatures  and with no access of light in order to effectively preserve their oxidative stability. Since all vegetable oils contain unsaturated fatty acids that can react with oxygen and deteriorate over time, displacement of oxygen with inert gases may result in a reduction of the rate of oxidation.

View Article and Find Full Text PDF

The objective of the study was to evaluate the use of PSE meat in the production of sterilized pork type canned meat in its own gravy. Canned meat products were produced with 50% of PSE meat as well as with 100% PSE meat, and compared with canned meat products of good quality (RFN). It was found that decreased quality of PSE meat had a small impact on the quality of canned meat products.

View Article and Find Full Text PDF