Antibacterial photodynamic therapy (aPDT) using rose bengal (RB) and blue-light kills bacteria through the production of reactive oxygen derivates. However, the interaction mechanism of RB with bacterial cells remains unclear. This study investigated the uptake efficiency and the antibacterial activity of blue light-activated RB against Enterococcus faecalis and Fusobacterium nucleatum.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2015
Background: In dentistry, antibacterial photodynamic therapy (a-PDT) has shown promising results for inactivating bacterial biofilms causing carious, endodontic and periodontal diseases. In the current study, we assessed the ability of eosin Y exposed to 3 irradiation protocols at inactivating Enterococcus faecalis biofilms, in vitro.
Methods: E.
Photodiagnosis Photodyn Ther
September 2014
Background: Streptococcus mutans biofilms are considered as primary causative agents of dental caries. Photodynamic antimicrobial chemotherapy (PACT) has been recently proposed as a strategy for inactivating dental biofilms. This study aimed to investigate the effect of blue light-activated curcumin on S.
View Article and Find Full Text PDFIntroduction: Pulp repair is less likely to occur when dentin or pulpal tissue remains infected after caries excavation. Yet there are currently few options to kill residual bacteria without damaging resident cells. The current study has evaluated the effect of 3 blue light-activated chemicals on the viability of lactobacilli, odontoblast-like cells (MDPC-23), undifferentiated pulp cells (OD21), and human embryonic stem cells (hESC H1).
View Article and Find Full Text PDFIntroduction: When applied onto SLA titanium, Titanium Nitride Oxide (TiNOx) coatings are known for their stimulating effect on osteoblast proliferation while maintaining a high degree of differentiation.
Objective: To determine whether the stimulating effect of TiNOx coatings is or is not dependent of the metal substrate.
Methods: A TiNOx coating was deposited on roughened stainless steel (SS-SLA-TiNOx).
Introduction: Titanium nitride oxide (TiNOx) coatings are known for their biocompatibility, hardness and high resistance to corrosion and wear. Further, they can be applied by plasma vapor deposition onto a wide variety of metallic, mineral, or organic substrates. In cell cultures, TiNOx coatings applied onto SLA (sandblasted, large grit, acid etched)-roughened titanium surfaces increased human primary osteoblast proliferation by 1.
View Article and Find Full Text PDFThis study evaluated the effect of chlorhexidine/thymol (CHX/T) and fluoride (F) varnishes on biofilm formation in vitro. Hydroxyapatite discs coated with varnish were first immersed in saline for 0, 3, 7 or 14 d, then immersed in pasteurized saliva. The discs were incubated for 20 h with a bacterial suspension containing Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus oralis, and Veillonella dispar.
View Article and Find Full Text PDF