Publications by authors named "Anna F Wang Erickson"

Asthma affects millions worldwide and involves complex genetic, immunological, and environmental factors. The nasal microbiome is increasingly recognized for its role in asthma development, but inconsistent results and small sample sizes have limited a clear understanding. We aimed to clarify the nasal microbiome's role in asthma using large datasets and meta-transcriptomic analysis.

View Article and Find Full Text PDF

Background: The burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in asymptomatic children was initially presumed to be high, which influenced hospital, school and childcare policies. Before vaccines were widely available, some hospitals implemented universal preprocedural SARS-CoV-2 polymerase chain reaction testing on asymptomatic patients. Understanding SARS-CoV-2 prevalence in asymptomatic children is needed to illuminate the diversity of viral characteristics and inform policies implemented during future pandemics.

View Article and Find Full Text PDF

Importance: SARS-CoV-2 surveillance studies in US child care centers (CCCs) in the post-COVID-19 vaccine era are needed to provide information on incidence and transmission in this setting.

Objective: To characterize SARS-CoV-2 incidence and transmission in children attending CCCs (students) and their child care providers (CCPs) and household contacts.

Design, Setting, And Participants: This prospective surveillance cohort study was conducted from April 22, 2021, through March 31, 2022, and included 11 CCCs in 2 cities.

View Article and Find Full Text PDF

Sporulation in Bacillus subtilis is governed by a cascade of alternative RNA polymerase sigma factors. We previously identified a small protein Fin that is produced under the control of the sporulation sigma factor σ to create a negative feedback loop that inhibits σ -directed gene transcription. Cells deleted for fin are defective for spore formation and exhibit increased levels of σ -directed gene transcription.

View Article and Find Full Text PDF

Sigma (σ) factors direct gene transcription by binding to and determining the promoter recognition specificity of RNA polymerase (RNAP) in bacteria. Genes transcribed under the control of alternative sigma factors allow cells to respond to stress and undergo developmental processes, such as sporulation in , in which gene expression is controlled by a cascade of alternative sigma factors. Binding of sigma factors to RNA polymerase depends on the coiled-coil (or clamp helices) motif of the β' subunit.

View Article and Find Full Text PDF

Unlabelled: SpoIIQ is an essential component of a channel connecting the developing forespore to the adjacent mother cell during Bacillus subtilis sporulation. This channel is generally required for late gene expression in the forespore, including that directed by the late-acting sigma factor σ(G) Here, we present evidence that SpoIIQ also participates in a previously unknown gene regulatory circuit that specifically represses expression of the gene encoding the anti-sigma factor CsfB, a potent inhibitor of σ(G) The csfB gene is ordinarily transcribed in the forespore only by the early-acting sigma factor σ(F) However, in a mutant lacking the highly conserved SpoIIQ transmembrane amino acid Tyr-28, csfB was also aberrantly transcribed later by σ(G), the very target of CsfB inhibition. This regulation of csfB by SpoIIQ Tyr-28 is specific, given that the expression of other σ(F)-dependent genes was unaffected.

View Article and Find Full Text PDF

A growing class of proteins regulates transcription through interaction with DNA-dependent RNA polymerase. Here we report that a recently identified, highly conserved sporulation gene ylyA encodes a novel RNA polymerase-binding protein that influences the expression of genes under the control of the late-acting, sporulation sigma factor σ(G) in Bacillus subtilis. Spores from a ylyA mutant exhibited defects in germination corresponding to changes in the levels of membrane receptors for spore germinants and a protein channel governing the release of dipicolinic acid and hydration of the spore core during germination.

View Article and Find Full Text PDF