Publications by authors named "Anna Efimenko"

Future carbon management strategies require storage in elemental form, achievable through a sequence of CO hydrogenation reactions. Hydrogen is recycled from molecular intermediates by dehydrogenation, and side product acetylene selectively hydrogenated to ethylene. Existing Pd alloy catalysts for gas purification underperform in concentrated feeds, necessitating novel concepts.

View Article and Find Full Text PDF

Nickel/yttria-stabilized zirconia (YSZ) composites are the most commonly used fuel electrodes for solid oxide cells. While microstructural changes of Ni/YSZ during operational conditions have been thoroughly investigated, there is limited knowledge regarding Ni/YSZ surface chemistry under working conditions. In this study, we examine the interaction between Ni/YSZ electrodes and water vapor under open circuit and polarization conditions, utilizing near ambient pressure soft and hard X-ray photoelectron spectroscopies.

View Article and Find Full Text PDF

Metal-support interactions, which are essential for the design of supported metal catalysts, used, e.g., for CO activation, are still only partially understood.

View Article and Find Full Text PDF

tender X-ray absorption near-edge structure (XANES) spectroscopy at the P -edge was utilized to investigate the oxidation mechanism of aqueous HPO on Pt electrodes under various conditions relevant to high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) applications. XANES and electrochemical analysis were conducted under different tender X-ray irradiation doses, revealing that intense radiation induces the oxidation of aqueous HPO via HO yielding HPO and H. A broadly applicable experimental procedure was successfully developed to suppress these undesirable radiation-induced effects, enabling a more accurate determination of the aqueous HPO oxidation mechanism.

View Article and Find Full Text PDF

The interaction between metal particles and the oxide support, the so-called metal-support interaction, plays a critical role in the performance of heterogenous catalysts. Probing the dynamic evolution of these interactions under reactive gas atmospheres is crucial to comprehending the structure-performance relationship and eventually designing new catalysts with enhanced properties. Cobalt supported on TiO (Co/TiO) is an industrially relevant catalyst applied in Fischer-Tropsch synthesis.

View Article and Find Full Text PDF

In the high spin-orbit-coupled SrIrO, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir-O bond geometry in SrIrO and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained SrIrO films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening.

View Article and Find Full Text PDF

Developing characterization techniques and analysis methods adapted to the investigation of nanoparticles (NPs) is of fundamental importance considering the role of these materials in many fields of research. The study of actinide based NPs, despite their environmental relevance, is still underdeveloped compared to that of NPs based on stable and lighter elements. We present here an investigation of ThO NPs performed with High-Energy Resolution Fluorescence Detected (HERFD) X-ray Absorption Near-Edge Structure (XANES) and with ab initio XANES simulations.

View Article and Find Full Text PDF