The basic concept of conditionally replicating adenoviruses (CRAD) as oncolytic agents is that progenies generated from each round of infection will disperse, infect and kill new cancer cells. However, CRAD has only inhibited, but not eradicated tumor growth in xenograft tumor therapy, and CRAD therapy has had only marginal clinical benefit to cancer patients. Here, we found that CRAD propagation and cancer cell survival co-existed for long periods of time when infection was initiated at low multiplicity of infection (MOI), and cancer cell killing was inefficient and slow compared to the assumed cell killing effect upon infection at high MOI.
View Article and Find Full Text PDFPurpose: Chromosomal instability (CIN) is believed to have an important role in the pathogenesis of urothelial cancer (UC). The aim of this study was to evaluate whether disturbances of mitotic segregation contribute to CIN in UC, if these processes have any effect on the course of disease, and how deregulation of these mechanisms affects tumor cell growth.
Experimental Design: We developed molecular cytogenetic methods to classify mitotic segregation abnormalities in a panel of UC cell lines.
Telomerase activity has been suggested to be critically involved in hematopoietic stem cell (HSC) self-renewal. However, it has been unclear whether human HSCs have telomerase activity and how telomerase activity is regulated within the HSC and progenitor pool. Here, we isolated living cord-blood (CB) CD34(+) cells with up-regulated human telomerase reverse transcriptase (hTERT) expression by using an hTERT-reporting adenoviral vector encoding destabilized green fluorescent protein (dGFP) driven by the hTERT promoter, and functionally characterized them in comparison with control vector-transduced CD34(+) cells expressing GFP.
View Article and Find Full Text PDFElevated telomerase activity is an important molecular signature of cancer cells and primitive cells in regenerative tissues. However, isolation of single living cells with endogenous telomerase activity has not yet been possible. Here, we developed adenovirus serotype 35 tropism-based vectors encoding destabilized enhanced green fluorescence protein with a half-life of 2 h (d2EGFP) driven by the human telomerase reverse transcriptase (hTERT) promoter.
View Article and Find Full Text PDF