Nanopipettes (pipettes with diameters <1 μm) were explored as pressure-driven fluid manipulation tools for sampling nanoliter volumes of fluids. The fundamental behavior of fluids confined in the narrow channels of the nanopipette shank was studied to optimize sampling volume and probe geometry. This method was utilized to collect nanoliter volumes (<10 nL) of sample from single cells and live first instar larvae.
View Article and Find Full Text PDFWe detail the operation mechanism and instrumental limitations for potentiometric-scanning ion conductance microscopy (P-SICM). P-SICM makes use of a dual-barrel probe, where probe position is controlled by the current measured in one barrel and the potential is measured in a second barrel. Here we determine the interaction of these two barrels and resultant effects in quantitation of signals.
View Article and Find Full Text PDFScanning Ion Conductance Microscopy (SICM) has been developed originally for high-resolution imaging of topographic features. Recently, we have described a hybrid voltage scanning mode of SICM, termed Potentiometric-SICM (P-SICM) for recording transmembrane ionic conductance at specific nanostructures of synthetic and biological interfaces. With this technique, paracellular conductance through tight junctions - a subcellular structure that has been difficult to interrogate previously - has been realized.
View Article and Find Full Text PDFWe report a strategy for fabrication of sub-micron, multifunctional carbon electrodes and application of these electrodes as probes for scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM). The fabrication process utilized chemical vapor deposition of parylene, followed by thermal pyrolysis to form conductive carbon and then further deposition of parylene to form an insulation layer. To achieve well-defined electrode geometries, two methods of electrode exposure were utilized.
View Article and Find Full Text PDF