Background: MicroRNAs (miRNAs) are RNA molecules that are involved in the regulation of many cellular processes, including those related to human cancers. The aim of this study was to determine, as a proof of principle, whether specific candidate miRNAs could be detected in fine-needle aspirate (FNA) biopsies of pancreatic ductal adenocarcinoma (PDAC) and could accurately differentiate malignant from benign pancreatic tissues.
Methods: We used TaqMan(R) assays to quantify miRNA levels in FNA samples collected in RNARetain (n = 16) and compared the results with a training set consisting of frozen macrodissected pancreatic samples (n = 20).
Formalin-fixed, paraffin-embedded tissues are an invaluable tool for biomarker discovery and validation. As these archived specimens are not always compatible with modern genomic techniques such as gene expression arrays, we assessed the use of microRNA (miRNA) as an alternative means for the reliable molecular characterization of formalin-fixed, paraffin-embedded tissues. Expression profiling using two different microarray platforms and multiple mouse and human formalin-fixed, paraffin-embedded tissue types resulted in the correlation ratios of miRNA expression levels between frozen and fixed tissue pairs ranging from 0.
View Article and Find Full Text PDFHistopathology archives of well-annotated formalin-fixed, paraffin-embedded (FFPE) tissue specimens are valuable resources for retrospective studies of human diseases. Since recovery of quality intact mRNA compatible with molecular techniques is often difficult due to degradation, we evaluated microRNA (miRNA), a novel class of small RNA molecules with growing therapeutic and diagnostic potential, as an alternative analyte for gene expression studies of FFPE samples. Analyzing total RNA yield, miRNA recovery, and robustness of real-time polymerase chain reaction for miRNA, mRNA, and rRNA species, we compared the performance of commercially available RNA isolation kits and identified a preferred methodology.
View Article and Find Full Text PDFAptamer-based microarrays for the quantitation of multiple protein analytes have been developed. A multiplex aptamer microarray was generated by printing two RNA aptamers (anti-lysozyme and anti-ricin) and two DNA aptamers (anti-IgE and anti-thrombin) on to either streptavidin (SA) or neutravidin (NA)-coated glass slides. However, substantial optimization was required in order to ensure the simultaneous function of the aptamer:analyte pairs.
View Article and Find Full Text PDFAcyl carrier proteins (ACPs) play a fundamental role in directing intermediates among the enzyme active sites of fatty acid and polyketide synthases (PKSs). In this paper, we demonstrate that the Streptomyces coelicolor (S. coelicolor) actinorhodin (act) PKS ACP can catalyze transfer of malonate to type II S.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of small noncoding RNAs that have important regulatory roles in multicellular organisms. The public miRNA database contains 321 human miRNA sequences, 234 of which have been experimentally verified. To explore the possibility that additional miRNAs are present in the human genome, we have developed an experimental approach called miRNA serial analysis of gene expression (miRAGE) and used it to perform the largest experimental analysis of human miRNAs to date.
View Article and Find Full Text PDFp38 Mitogen-activated protein kinase alpha (p38 MAPKalpha) is a member of the MAPK family. It is activated by cellular stresses and has a number of cellular substrates whose coordinated regulation mediates inflammatory responses. In addition, it is a useful anti-inflammatory drug target that has a high specificity for Ser-Pro or Thr-Pro motifs in proteins and contains a number of transcription factors as well as protein kinases in its catalog of known substrates.
View Article and Find Full Text PDFp38 mitogen-activated protein kinase alpha (MAPKalpha) belongs to the MAPK subfamily, which plays a pivotal role in cell signal transduction, where it mediates responses to cell stresses and, to a lesser extent, growth factors. Although its cellular function has been under intense scrutiny since its initial discovery, little progress has been made in understanding its kinetic mechanism. A contributory factor has been the lack of a fast and rigorous method for the purification of activated p38 MAPKalpha in sufficient quantity and purity for biophysical studies.
View Article and Find Full Text PDFWe are interested in the mechanism and regulation of the extracellular regulated protein kinases, ERK1 and ERK2, due to their key roles in cellular signal transduction and disease. Both enzymes phosphorylate a large number of structurally disparate proteins upon activation by phorbol esters, serum and growth factors, and are activated through a protein kinase cascade, termed the mitogen activated protein kinase (MAPK) pathway. ERK2 catalyses the transfer of the gamma-phosphate of adenosine triphosphate to serine or threonine residues found in Ser-Pro or Thr-Pro motifs on proteins.
View Article and Find Full Text PDFExtracellular regulated protein kinase 2 (ERK2) is a eukaryotic protein kinase whose activity is regulated by mitogenic stimuli. To gain insight into the catalytic properties of ERK2 and to complement structure-function studies, we undertook a pre-steady state kinetic analysis of the enzyme. To do this, ERK2 was quantitatively activated by MAPKK1 in vitro by monitoring the stoichiometry and site specificity of phosphorylation using a combination of protein mass spectrometry, tryptic peptide analysis, and (32)P radiolabeling.
View Article and Find Full Text PDFWhile X-ray and NMR structures are now available for most components of the Type II fatty acid synthase (FAS), there are no structures for Type I FAS domains. A region from the mammalian (rat) FAS, including the putative acyl carrier protein (ACP), has been cloned and over-expressed. Here we report multinuclear, multidimensional NMR studies which show that this isolated ACP domain contains four alpha-helices (residues 8-16 [1]; 41-51 [2]; 58-63 [3] and 66-74 [4]) and an overall global fold characteristic of ACPs from both Type II FAS and polyketide synthases (PKSs).
View Article and Find Full Text PDFThe source of malonyl groups for polyketide and fatty acid biosynthesis is malonyl CoA. During fatty acid and polyketide biosynthesis, malonyl groups are normally transferred to the acyl carrier protein (ACP) component of the synthase by a malonyl CoA:holo-ACP transacylase (MCAT) enzyme. The fatty acid synthase (FAS) malonyl CoA:ACP transacylase from Streptomyces coelicolor was expressed in Escherichia coli as a hexahistidine-tagged (His(6)) fusion protein in high yield.
View Article and Find Full Text PDF