A new thermally activated delayed fluorescence (TADF) compound based on a donor-acceptor (D-A) architecture (D = phenoxazine; A = dibenzo[]phenazine) has been developed, and its photophysical properties were characterized. The D-A compound is applicable as an emitting material for efficient organic light-emitting diodes (OLEDs), and its external quantum efficiency (EQE) exceeds the theoretical maximum of those with prompt fluorescent emitters. Most importantly, comparative study of the D-A molecule and its D-A-D counterpart from the viewpoints of the experiments and theoretical calculations revealed the effect of the number of the electron donor on the thermally activated delayed fluorescent behavior.
View Article and Find Full Text PDFThe presented study describes the method for the synthesis and characterization of a new class of conjugated copolymers containing a perylenediimide (PDI) and naphthalene diimide (NDI) side groups. The main conjugated backbone is a donor-acceptor polymer poly[3,6-carbazole--5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] containing thiophene and carbazole as donor units and benzothiadiazole as an acceptor unit. The presented compounds were synthesized in a multistep synthesis.
View Article and Find Full Text PDF