Publications by authors named "Anna Domachowska"

Resistance acquired toward anti-cancer agents is a significant drawback in breast cancer therapy. A key factor contributing to drug resistance is apoptosis suppression associated with the upregulation of anti-apoptotic Bcl-2 family proteins. Specifically, the anti-apoptotic Mcl-1 protein has been shown to play a significant role in drug resistance, making it an important therapeutic target.

View Article and Find Full Text PDF

ERK is a component of mitogen-activated protein kinases that controls a range of cellular processes including cell proliferation and survival. The upregulation of ERK has been associated with apoptosis inhibition in response to various stimuli including chemotherapeutic agents. Research has suggested that the upregulation of ERK signaling by the anticancer agent paclitaxel leads to acquired resistance of cells to this compound.

View Article and Find Full Text PDF

The glucose regulated protein 78 (GRP78) is a major chaperone of the endoplasmic reticulum, and a prosurvival component of the unfolded protein response. GRP78 is upregulated in many types of cancers, including breast cancer. Research has suggested that GRP78 overexpression confers chemoresistance to anti-estrogen agents through a mechanism involving the inhibition of a pro-apoptotic BH3-only protein, Bik.

View Article and Find Full Text PDF

HER2-overexpressing breast cancers account for about 30% of breast cancer occurrences and have been correlated with increased tumor aggressiveness and invasiveness. The nuclear factor-κB (NF-κB) is overexpressed in a subset of HER2-positive breast cancers and its upregulation has been associated with the metastatic potential of HER2-overexpressing tumors. The present study aimed at determining the potential of plumbagin, a naturally occurring naphthoquinone, to inhibit the invasion of HER2-overexpressing breast cancer cells and determine the involvement of NF-κB inhibition in plumbagin-mediated cell invasion suppression.

View Article and Find Full Text PDF

Bacterial cell envelope is generally accepted as the primary target for a photo-induced oxidative stress. It is plausible that DNA damage occurs during the antimicrobial photoinactivation. Here we investigate the correlation between DNA damage and photoinactivation by evaluating the level of RecA-based DNA repair system in Staphylococcus aureus.

View Article and Find Full Text PDF

It is well established that mTORC1 suppresses autophagy by phosphorylation and inactivation of proteins involved in autophagosome formation. However, the role of its substrate, p70S6 kinase1 (S6K1), in autophagy is quite controversial. In some models S6K1 activity correlates with autophagy suppression, however, some other studies show that S6K1 promotes rather than inhibits this process.

View Article and Find Full Text PDF