Plant-derived extracellular vesicles (EVs) have been recognized as important mediators of intercellular communication able to transfer active biomolecules across the plant and animal kingdoms. EVs have demonstrated an impressive array of biological activities, displaying preventive and therapeutic potential in mitigating various pathological processes. Indeed, the simplicity of delivering exogenous and endogenous bioactive molecules to mammalian cells with their low cytotoxicity makes EVs suitable agents for new therapeutic strategies for a variety of pathologies.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2023
The validity of omega 3 fatty acids (ω3 FAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as dietary supplements has been widely proved. It's well known in fact, that they protect against cardiovascular diseases, reduce the levels of triacylglycerides (TAGs) and cholesteryl esters (CEs) in blood, and have anti-inflammatory activity. For these reasons, in the last few years the production of dietary supplement containing ω3 has increased significantly.
View Article and Find Full Text PDFDiabetic wound infections (DWI) represent one of the most costly and disruptive complications in diabetic mellitus. The hyperglycemic state induces a persistent inflammation with immunological and biochemical impairments that promotes delayed wound healing processes and wound infection that often results in extended hospitalization and limb amputations. Currently, the available therapeutic options for the management of DWI are excruciating and expensive.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2023
A straightforward, low-cost, and scalable solid-state mechanochemical protocol for the synthesis of silver nanoparticles (AgNP) based on the use of the highly reducing agri-food by-product pecan nutshell (PNS) is reported herein. Under optimized conditions (180 min, 800 rpm, PNS/AgNO ratio = 55/45 /), a complete reduction in silver ions was achieved, leading to a material containing ca. 36% / Ag (X-ray diffraction analysis).
View Article and Find Full Text PDFThe Mediterranean Diet (MedDiet) is a term used to identify a dietary pattern originating from the unique multi-millennial interplay between natural food resources and the eating practices of people living in the Mediterranean basin. Scientific evidence has described the healthy properties of the MedDiet and its beneficial role in several pathological conditions. Nevertheless, current socio-economic trends have moved people away from this healthy lifestyle.
View Article and Find Full Text PDFThe beneficial effects of the Mediterranean diet (MedDiet), the most widely followed healthy diet in the world, are principally due to the presence in the foods of secondary metabolites, mainly polyphenols, whose healthy characteristics are widely recognized. However, one of the biggest problems associated with the consumption of polyphenols as nutraceutical adjuvant concerns their bioavailability. During the last decades, different nanotechnological approaches have been developed to enhance polyphenol bioavailability, avoiding the metabolic modifications that lead to low absorption, and improving their retention time inside the organisms.
View Article and Find Full Text PDFThe management of periodontitis remains a vital clinical challenge due to the interplay between the microorganisms of the dental biofilm and the host inflammatory response leading to a degenerative process in the surrounding tissues. Quercetin (QUE), a natural flavonol found in many foods, including apples, onions and tea, has exhibited prolonged and strong antibiofilm and anti-inflammatory effects both in vitro and in vivo. However, its clinical application is limited by its poor stability and water solubility, as well as its low bioavailability.
View Article and Find Full Text PDFCurcumin extracted from the rhizome of has been used in therapeutic preparations for centuries in different parts of the world. However, its bioactivity is limited by chemical instability, water insolubility, low bioavailability, and extensive metabolism. In this study, the coaxial electrospinning technique was used to produce both poly (ε-caprolactone) (PCL)-curcumin and core-shell nanofibers composed of PCL and curcumin in the core and poly (lactic acid) (PLA) in the shell.
View Article and Find Full Text PDFTo date, the implant-associated infections represent a worldwide challenge for the recently reported bacterial drug resistance that can lead to the inefficacy or low efficacy of conventional antibiotic therapies. Plant polyphenolic compounds, including resveratrol (RSV), are increasingly gaining consensus as valid and effective alternatives to antibiotics limiting antibiotic resistance. In this study, electrospun polylactic acid (PLA) membranes loaded with different concentrations of RSV are synthesized and characterized in their chemical, morphological, and release features.
View Article and Find Full Text PDFResin-based composites are widely used as dental restorative materials due to their excellent properties. They must have high modulus, high hardness, and be chemically inert while minimizing moisture uptake. To fulfill these higher standard prerequisites and properties, continuous improvements in each of their components are required.
View Article and Find Full Text PDFMicroRNAs (miRNAs) play a pivotal role in regulating the expression of genes involved in tumor development, invasion, and metastasis. In particular, microRNA-124 (miR-124) modulates the expression of carnitine palmitoyltransferase 1A (CPT1A) at the post-transcriptional level, impairing the ability of androgen-independent prostate cancer (PC3) cells to completely metabolize lipid substrates. However, the clinical translation of miRNAs requires the development of effective and safe delivery systems able to protect nucleic acids from degradation.
View Article and Find Full Text PDFJ Periodontal Implant Sci
December 2018
Purpose: The aim of this study was to evaluate the effects of various prophylactic treatments of titanium implants on bacterial biofilm formation, correlating surface modifications with the biofilms produced by PAO1, , and bacteria isolated from saliva.
Methods: Pure titanium disks were treated with various prophylactic procedures, and atomic force microscopy (AFM) was used to determine the degree to which surface roughness was modified. To evaluate antibiofilm activity, we used PAO1, , and saliva-isolated spp.
Metabolic syndrome (MetS) is defined as the co-occurrence of metabolic risk factors that includes insulin resistance, hyperinsulinemia, impaired glucose tolerance, type 2 diabetes mellitus, dyslipidemia, and visceral obesity. The clinical significance of MetS consists of identifying a subgroup of patients sharing a common physiopathological state predisposing to chronic diseases. Clinical and scientific studies pinpoint lifestyle modification as an effective strategy aiming to reduce several features accountable for the risk of MetS onset.
View Article and Find Full Text PDFNeurofibromas are the hallmark lesions in Neurofibromatosis 1 (NF1); these tumors are classified as cutaneous, subcutaneous and plexiform. In contrast to cutaneous and subcutaneous neurofibromas, plexiform neurofibromas can grow quickly and progress to malignancy. Curcumin, a turmeric-derived polyphenol, has been shown to interact with several molecular targets implicated in carcinogenesis.
View Article and Find Full Text PDFRett syndrome (RTT) is a neurodevelopmental disease that leads to intellectual deficit, motor disability, epilepsy and increased risk of sudden death. Although in up to 95% of cases this disease is caused by de novo loss-of-function mutations in the X-linked methyl-CpG binding protein 2 gene, it is a multisystem disease associated also with mitochondrial metabolic imbalance. In addition, the presence of long QT intervals (LQT) on the patients' electrocardiograms has been associated with the development of ventricular tachyarrhythmias and sudden death.
View Article and Find Full Text PDFUnderstanding the mechanisms by which mesenchymal stromal cells (MSCs) interact with the physical properties (e.g. topography, charge, ζ-potential, and contact angle) of polymeric surfaces is essential to design new biomaterials capable of regulating stem cell behavior.
View Article and Find Full Text PDFAn extracellular thermo-alkali-stable and cellulase-free xylanase from Geobacillus thermodenitrificans A333 was purified to homogeneity by ion exchange and size exclusion chromatography. Its molecular mass was 44 kDa as estimated in native and denaturing conditions by gel filtration and SDS-PAGE analysis, respectively. The xylanase (GtXyn) exhibited maximum activity at 70 °C and pH 7.
View Article and Find Full Text PDFThe diagnosis of glioblastoma is still based on tumor histology, but emerging molecular diagnosis is becoming an important part of glioblastoma classification. Besides the well-known cell cycle-related circuitries that are associated with glioblastoma onset and development, new insights may be derived by looking at pathways involved in regulation of epigenetic phenomena and cellular metabolism, which may both be highly deregulated in cancer cells. We evaluated if in glioblastoma patients the high grade of malignancy could be associated with aberrant expression of some genes involved in regulation of epigenetic phenomena and lipid metabolism.
View Article and Find Full Text PDFγ-Glutamyltranspeptidase (γ-GT) is an ubiquitous enzyme that catalyzes the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. γ-GTs from extremophiles, bacteria adapted to live in hostile environments, were selected as model systems to study the molecular underpinnings of their adaptation to extreme conditions and to find out special properties of potential biotechnological interest. Here, we report the cloning, expression and purification of two members of γ-GT family from two different extremophilic species, Thermus thermophilus (TtGT) and Deinococcus radiodurans (DrGT); the first is an aerobic eubacterium, growing at high temperatures (50-82°C), the second is a polyextremophile, as it tolerates radiations, cold, dehydration, vacuum, and acid.
View Article and Find Full Text PDFA novel sulfite oxidase has been identified from Thermus thermophilus AT62. Despite this enzyme showing significant amino-acid sequence homology to several bacterial and eukaryal putative and identified sulfite oxidases, the kinetic analysis, performed following the oxidation of sulfite and with ferricyanide as the electron acceptor, already pointed out major differences from representatives of bacterial and eukaryal sources. Sulfite oxidase from T.
View Article and Find Full Text PDFAn open reading frame (draSO) encoding a putative sulfite oxidase (SO) was identified in the sequence of chromosome II of Deinococcus radiodurans; the predicted gene product showed significant amino acid sequence homology to several bacterial and eukaryotic SOs, such as the biochemically and structurally characterized enzyme from Arabidopsis thaliana. Cloning of the Deinococcus SO gene was performed by PCR amplification from the bacterial genomic DNA, and heterologous gene expression of a histidine-tagged polypeptide was obtained in a molybdopterin-overproducing strain of Escherichia coli. The recombinant protein was purified to homogeneity by nickel chelating affinity chromatography, and its main kinetic and chemical physical parameters were determined.
View Article and Find Full Text PDF