Trichome patterning in is regulated by , and (MBW) genes. These are considered to form a trimeric MBW protein complex that promotes trichome formation. The MBW proteins are engaged in a regulatory network to select trichome cells among epidermal cells through R3MYB proteins that can move between cells and repress the MBW complex by competitive binding with the R2R3MYB to the bHLHL protein.
View Article and Find Full Text PDFTrichomes are regularly distributed on the leaves of Arabidopsis thaliana. The gene regulatory network underlying trichome patterning involves more than 15 genes. However, it is possible to explain patterning with only five components.
View Article and Find Full Text PDFMathematical modelling techniques are integral to current research in plant synthetic biology. Modelling approaches can provide mechanistic understanding of a system, allowing predictions of behaviour and thus providing a tool to help design and analyse biological circuits. In this chapter, we provide an overview of mathematical modelling methods and their significance for plant synthetic biology.
View Article and Find Full Text PDFThe regular distribution of trichomes on leaves in Arabidopsis is a well-understood model system for two-dimensional pattern formation. It involves more than 10 genes and is governed by two patterning principles, the activator-inhibitor (AI) and the activator-depletion (AD) mechanisms, though their relative contributions are unknown. The complexity of gene interactions, protein interactions, and intra- and intercellular mobility of proteins makes it very challenging to understand which aspects are relevant for pattern formation.
View Article and Find Full Text PDFThe genetic and molecular analysis of trichome development in has generated a detailed knowledge about the underlying regulatory genes and networks. However, how rapidly these mechanisms diverge during evolution is unknown. To address this problem, we used an unbiased forward genetic approach to identify most genes involved in trichome development in the related crucifer species In general, we found most trichome mutant classes known in We identified orthologous genes of the relevant genes by sequence similarity and synteny and sequenced candidate genes in the mutants.
View Article and Find Full Text PDF