Introduction: Pathogenic variants in the gene are linked to a spectrum of syndromes that exhibit partial clinical overlap. Hemizygous loss-of-function variants are considered lethal in males, while heterozygous loss-of-function variants generally result in oro-facial-digital syndrome type 1. A reported phenotype, Simpson-Golabi-Behmel syndrome type 2, was published once but remains controversial, with many specialists questioning its validity and arguing about its continued listing in the OMIM database.
View Article and Find Full Text PDFHuman-induced airway basal cells (hiBCs) derived from human-induced pluripotent stem cells (hiPSCs) offer a promising cell model for studying lung diseases, regenerative medicine, and developing new gene therapy methods. We analyzed existing differentiation protocols and proposed our own protocol for obtaining hiBCs, which involves step-by-step differentiation of hiPSCs into definitive endoderm, anterior foregut endoderm, NKX2.1+ lung progenitors, and cultivation on basal cell medium with subsequent cell sorting using the surface marker CD271 (NGFR).
View Article and Find Full Text PDFThis study aimed to enhance homology-directed repair (HDR) efficiency in CRISPR/Cas-mediated genome editing by targeting three key factors regulating the balance between HDR and non-homologous end joining (NHEJ): MAD2L2, SCAI, and Ligase IV. In order to achieve this, a cellular model using mutated eGFP was designed to monitor HDR events. Results showed that MAD2L2 knockdown and SCR7 treatment significantly improved HDR efficiency during Cas9-mediated HDR repair of the mutated eGFP gene in the HEK293T cell line.
View Article and Find Full Text PDFAirway and lung organoids derived from human-induced pluripotent stem cells (hiPSCs) are current models for personalized drug screening, cell-cell interaction studies, and lung disease research. We analyzed the existing differentiation protocols and identified the optimal conditions for obtaining organoids. In this article, we describe a step-by-step protocol for differentiating hiPSCs into airway and lung organoids.
View Article and Find Full Text PDFThis article reports the electrospinning technique for the manufacturing of multilayered scaffolds for bile duct tissue engineering based on an inner layer of polycaprolactone (PCL) and an outer layer either of a copolymer of D,L-lactide and glycolide (PLGA) or a copolymer of L-lactide and ε-caprolactone (PLCL). A study of the degradation properties of separate polymers showed that flat PCL samples exhibited the highest resistance to hydrolysis in comparison with PLGA and PLCL. Irrespective of the liquid-phase nature, no significant mass loss of PCL samples was found in 140 days of incubation.
View Article and Find Full Text PDFCell Tissue Res
December 2022
Lung diseases occupy a leading position in human morbidity and are the third leading cause of death. Often the chronic forms of these diseases do not respond to therapy, so that lung transplantation is the only treatment option. The development of cellular and biotechnologies offers a new solution-the use of lung organoids for transplantation in such patients.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) was successfully generated from skin fibroblast obtained from patient with cystic fibrosis by using non-integrating, viral CytoTune™-iPS 2.0 Sendai Reprogramming Kit, which contain three vectors preparation: polycistronic Klf4-Oct3/4-Sox2, cMyc, and Klf4. Created iPSC lines showed a normal karyotype, expressed pluripotency markers and demonstrated the potential to differentiate into three germ layers in spontaneous differentiation assay.
View Article and Find Full Text PDFSkin fibroblasts obtained from a 20-year-old woman with clinically manifested and genetically proven (F508del/CFTRdele2.3) cystic fibrosis were successfully transformed into induced pluripotent stem cells (iPSCs) by using Sendai virus-based reprogramming vectors including the four Yamanaka factors, OCT3/4, SOX2, KLF4, and c-MYC. The iPSCs showed a normal karyotype, expressed pluripotency markers and exhibited the potential to differentiate into three germ layers in spontaneous differentiation assay.
View Article and Find Full Text PDFSynthesis of a Janus periodic mesoporous organosilica material (JPMO) is presented here. In this strategy, the surface of the hollow silica material was selectively functionalized with two different bridged organic-inorganic hybrid groups. It was found that the resulting bifunctional material is able to form a stable Pickering emulsion.
View Article and Find Full Text PDFCystic fibrosis is one of the most common inherited diseases caused by mutations in CFTR gene, of which F508del is the most frequent. Currently, the possibility of cell therapy including genome editing is widely discussed. We generated induced pluripotent stem cells from fibroblasts obtained from a 22-year-old woman with clinically manifested and genetically proven disease by using non-viral, non-integrating RNA reprogramming vector that contains five reprogramming factors: OCT4, KLF4, SOX2, GLIS1, and c-MYC.
View Article and Find Full Text PDFSkin fibroblasts obtained from a 28-year-old man with clinically manifested and genetically proven (F508del/W1282X) cystic fibrosis were successfully transformed into induced pluripotent stem cells (iPSCs) by using non-viral, non-integrating, self-replicating RNA reprogramming vectorthat contains five reprogramming factors: OCT4, KLF4, SOX2, GLIS1, and c-MYC as well as a puromycin-resistance gene. Two iPSC lines showed a normal karyotype, expressed pluripotency markers and exhibited the potential to differentiate into three germ layers in spontaneous differentiation assay. These iPSC lines may be subsequently used for development of a personalized etiotropic treatment,disease modelling, cell differentiation and organoid formation, pharmacological investigations and drug screening.
View Article and Find Full Text PDFCRISPR-Cas system was first mentioned in 1987, and over the years have been studied so active that now it becomes the state-of-the-art tool for genome editing. Its working principle is based on Cas nuclease ability to bind short RNA, which targets it to complementary DNA or RNA sequence for highly precise cleavage. This alone or together with donor DNA allows to modify targeted sequence in different ways.
View Article and Find Full Text PDFSkin fibroblasts obtained from a 27-year-old man with clinically manifested and genetically proven (F508del/F508del) cystic fibrosis were successfully transformed into induced pluripotent stem cells (iPSCs) by using Sendai virus-based reprogramming vectors including the four Yamanaka factors, OCT3/4, SOX2, KLF4, and c-MYC. The iPSCs showed a normal karyotype, expressed pluripotency markers and exhibited the potential to differentiate into three germ layers in spontaneous differentiation assay. This iPSC line may be subsequently used for development of a personalized etiotropic treatment including genome editing, and for disease modelling and drug screening.
View Article and Find Full Text PDFGlutamate excitotoxicity is implicated in the pathogenesis of numerous diseases, such as stroke, traumatic brain injury, and Alzheimer's disease, for which insulin resistance is a concomitant condition, and intranasal insulin treatment is believed to be a promising therapy. Excitotoxicity is initiated primarily by the sustained stimulation of ionotropic glutamate receptors and leads to a rise in intracellular Ca ([Ca] ), followed by a cascade of intracellular events, such as delayed calcium deregulation (DCD), mitochondrial depolarization, adenosine triphosphate (ATP) depletion that collectively end in cell death. Therefore, cross-talk between insulin and glutamate signaling in excitotoxicity is of particular interest for research.
View Article and Find Full Text PDFWhile the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties.
View Article and Find Full Text PDFThe Binding of nonylphenol to respective antibodies immobilized on solid substrates was studied with the methods of total internal reflection ellipsometry (TIRE) and QCM (quartz crystal microbalance) impedance spectroscopy. The binding reaction was proved to be highly specific having an association constant of KA=1.6x10(6) mol(-1) L and resulted in an increase in both the adsorbed layer thickness of 23 nm and the added mass of 18.
View Article and Find Full Text PDF