The Engraft Learning Health Network (LHN) aims to improve outcomes for patients undergoing transplant and cellular therapy (TCT) through a collaborative, data-driven approach. Engraft brings together diverse stakeholders, including clinicians, patients, caregivers, and institutions, to standardize best practices and accelerate the dissemination of innovations in TCT care. By establishing a multicenter, real-world clinical registry focused on rapid-cycle quality improvement (QI) and implementation research, Engraft seeks to reduce variability in clinical practice to improve TCT outcomes across centers.
View Article and Find Full Text PDFTransplant Cell Ther
September 2024
Implementation science (IS) is a systematic way to approach the broader adoption of evidence-based practices and has as its goal to understand and address the gap between research and practice, ensuring that research findings are effectively translated into practice and policy to improve health outcomes and service. We describe the various facets of IS and their relevance to the field of hematopoietic cell transplantation and cellular therapy (HCT/CT) with an emphasis on health equity, community engagement, and systems approach. We also review the similarities and differences among clinical research, quality improvement, and IS.
View Article and Find Full Text PDFFollowing hematopoietic cell transplantation (HCT), recipients are subjected to extensive genetic testing to monitor the efficacy of the transplantation and identify relapsing malignant disease. This testing is increasingly including the use of large gene panels, which may lead to incidental identification of genetic and molecular information of potential donor origin. Deciphering whether variants are of donor origin, and if so, whether there are clinical implications for the donor can prove challenging.
View Article and Find Full Text PDFNext-generation neural interfaces for bidirectional communication with the central nervous system aim to achieve the intimate integration with the neural tissue with minimal neuroinflammatory response, high spatio-temporal resolution, very high sensitivity, and readout stability. The design and manufacturing of devices for low power/low noise neural recording and safe and energy-efficient stimulation that are, at the same time, conformable to the brain, with matched mechanical properties and biocompatibility, is a convergence area of research where neuroscientists, materials scientists, and nanotechnologists operate synergically. The biotic-abiotic neural interface, however, remains a formidable challenge that prompts for new materials platforms and innovation in device layouts.
View Article and Find Full Text PDFThe water dispersion of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) is one of the most used material precursors in organic electronics also thanks to its industrial production. There is a growing interest for conductive polymers that could be alternative surrogates or replace PEDOT:PSS in some applications. A recent study by our group compared electrodeposited PEDOT:Nafion vs PEDOT:PSS in the use for neural recordings.
View Article and Find Full Text PDF