Background And Objectives: mRNA vaccines elicit a durable humoral response to SARS-CoV-2 in adults, whereas evidence in children is scarce. This study aimed to assess the early and long-term immune response to the mRNA vaccine in children with or without previous SARS-CoV-2 infection.
Methods: In a multicentre prospective observational study, we profiled the immune response to the Pfizer BioNTech (BNT162b2) vaccine in 5-11-year-old children attending the University Pediatric Hospital of Padua and Bambino-Gesù Hospital in Rome (Italy) from December-2021 to February-2023.
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability.
View Article and Find Full Text PDFTo evaluate the rate of early breast cancer (EBC) patients treated with neoadjuvant systemic therapy (NAT) in Italy, criteria of patient selection and types of therapies delivered, an analysis of 1276 patients with stage I-II-III was conducted out of 1633 patients enrolled in the multicenter prospective observational BRIDE study. A total of 177 patients (13.9%) were treated with NAT and 1099 (85.
View Article and Find Full Text PDFEur J Cancer
September 2021
Background: Despite endocrine therapy being the mainstay of treatment for hormone receptor positive (HR+)/HER2- metastatic breast cancer, patients at risk of visceral crisis or doubt for endocrine sensitivity are still offered first-line chemotherapy. Maintenance hormonal therapy is generally offered at the discontinuation of chemotherapy. The MAINtenance Afinitor study is a randomised, phase III trial comparing maintenance everolimus combined with aromatase inhibitors (AIs) versus AI monotherapy in patients with disease control after first-line chemotherapy.
View Article and Find Full Text PDFBackground: Combining the strengths of surgical robotics and minimally invasive surgery (MIS) holds the potential to revolutionize surgical interventions. The MIS advantages for the patients are obvious, but the use of instrumentation suitable for MIS often translates in limiting the surgeon capabilities (eg, reduction of dexterity and maneuverability and demanding navigation around organs). To overcome these shortcomings, the application of soft robotics technologies and approaches can be beneficial.
View Article and Find Full Text PDFHighly active antiretroviral therapy (HAART) changed the natural history of pediatric HIV infection. This review focuses on trends of HIV-associated cancers in childhood in the HAART era and analyses potential pathogenetic mechanisms. HAART reduced AIDS-defined-malignancies (ADM), but incidence of several non-ADM is increasing.
View Article and Find Full Text PDFThis paper introduces the design and development of a novel pressure-sensitive foot insole for real-time monitoring of plantar pressure distribution during walking. The device consists of a flexible insole with 64 pressure-sensitive elements and an integrated electronic board for high-frequency data acquisition, pre-filtering, and wireless transmission to a remote data computing/storing unit. The pressure-sensitive technology is based on an optoelectronic technology developed at Scuola Superiore Sant'Anna.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
The appropriate ergonomic design of a wearable robotic device is critical for the effectiveness of the device itself. In this paper we identified two key requirements for a structural ergonomics: the correct kinematic compatibility with the human limb and a comfortable and adaptable physical human-robot interface. We then show how the aforementioned requirements have been faced and implemented in the mechanical design of two wearable devices for elbow and hand rehabilitation, both developed at The BioRobotics Institute of Scuola Superiore Sant' Anna.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure.
View Article and Find Full Text PDFWe present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes and shapes, and to measure different pressure ranges.
View Article and Find Full Text PDFElectromyographical (EMG) signals have been frequently used to estimate human muscular torques. In the field of human-assistive robotics, these methods provide valuable information to provide effectively support to the user. However, their usability is strongly limited by the necessity of complex user-dependent and session-dependent calibration procedures, which confine their use to the laboratory environment.
View Article and Find Full Text PDFA sensory apparatus to monitor pressure distribution on the physical human-robot interface of lower-limb exoskeletons is presented. We propose a distributed measure of the interaction pressure over the whole contact area between the user and the machine as an alternative measurement method of human-robot interaction. To obtain this measure, an array of newly-developed soft silicone pressure sensors is inserted between the limb and the mechanical interface that connects the robot to the user, in direct contact with the wearer's skin.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
In this work, we present the development of an in-shoe device to monitor plantar pressure distribution for gait analysis. The device consists in a matrix of 64 sensitive elements, integrated with in-shoe electronics and battery which provide an high-frequency data acquisition, wireless transmission and an average autonomy of 7 hours in continuous working mode. The device is presented along with its experimental characterization and a preliminary validation on a healthy subject.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
Electromyography (EMG) has been frequently proposed as the driving signal for controlling powered exoskeletons. Lot of effort has been spent to design accurate algorithms for muscular torque estimation, while very few studies attempted to understand to what extent an accurate torque estimate is indeed necessary to provide effective movement assistance through powered exoskeletons. In this study, we focus on the latter aspect by using a simple and "low-accuracy" torque estimate, an EMG-proportional control, to provide assistance through an elbow exoskeleton.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2011
A new and alternative method to measure the interaction force between the user and a lower-limb gait rehabilitation exoskeleton is presented. Instead of using a load cell to measure the resulting interaction force, we propose a distributed measure of the normal interaction pressure over the whole contact area between the user and the machine. To obtain this measurement, a soft silicone tactile sensor is inserted between the limb and commonly used connection cuffs.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2010
This work describes the neuro-robotics paradigm: the fusion of neuroscience and robotics. The fusion of neuroscience and robotics, called neuro-robotics, is fundamental to develop robotic systems to be used in functional support, personal assistance and neuro-rehabilitation. While usually the robotic device is considered as a "tool" for neuroscientific studies, a breakthrough is obtained if the two scientific competences and methodologies converge to develop innovative platforms to go beyond robotics by including novel models to design better robots.
View Article and Find Full Text PDFBackground: Acute lymphoblastic leukaemia in infants younger than 1 year is rare, and infants with the disease have worse outcomes than do older children. We initiated an international study to investigate the effects of a new hybrid treatment protocol with elements designed to treat both acute lymphoblastic leukaemia and acute myeloid leukaemia, and to identify any prognostic factors for outcome in infants. We also did a randomised trial to establish the value of a late intensification course.
View Article and Find Full Text PDF