Publications by authors named "Anna Dari"

Aims: To develop a semimechanistic model that describes the kinetic profile and variability of antibody (Ab) concentrations following vaccination with Ad26.COV2.S at different doses and dosing intervals.

View Article and Find Full Text PDF

Mechanistic model-based simulations can be deployed to project the persistence of humoral immune response following vaccination. We used this approach to project the antibody persistence through 24 months from the data pooled across five clinical trials in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-seronegative participants following vaccination with Ad26.COV2.

View Article and Find Full Text PDF

Mechanistic modeling can be used to describe the time course of vaccine-induced humoral immunity and to identify key biologic drivers in antibody production. We used a six-compartment mechanistic model to describe a 20-week time course of humoral immune responses in 56 non-human primates (NHPs) elicited by vaccination with Ad26.COV2.

View Article and Find Full Text PDF

Understanding persistence of humoral immune responses elicited by vaccination against coronavirus disease 2019 (COVID-19) is critical for informing the duration of protection and appropriate booster timing. We developed a mechanistic model to characterize the time course of humoral immune responses in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-seronegative adults after primary vaccination with the Janssen COVID-19 vaccine, Ad26.COV2.

View Article and Find Full Text PDF

Several COVID-19 vaccines have recently gained authorization for emergency use. Limited knowledge on duration of immunity and efficacy of these vaccines is currently available. Data on other coronaviruses after natural infection suggest that immunity to SARS-CoV-2 might be short-lived, and preliminary evidence indicates waning antibody titers following SARS-CoV-2 infection.

View Article and Find Full Text PDF

Introduction: Understanding the effect of oxycodone pharmacokinetics (PK) on µ-opioid receptor binding benefits from an integrated approach to compiling the results of multiple studies. The current pharmacokinetic/pharmacodynamic (PK/PD) model analysis brings together various studies to support the interpretation of newly collected PK/PD data, putting the new results into the perspective of the full concentration-effect curve.

Methods: A two-step modeling approach was applied to characterize the PK of oxycodone and its PK/PD relationship for the pupil diameter as a biomarker for µ-opioid receptor binding in recreational opioid users.

View Article and Find Full Text PDF

Following the advent of synthetic biology, several gene networks have been engineered to emulate digital devices, with the ability to program cells for different applications. In this work, we adapt the concept of logical stochastic resonance to a synthetic gene network derived from a bacteriophage λ. The intriguing results of this study show that it is possible to build a biological logic block that can emulate or switch from the AND to the OR gate functionalities through externally tuning the system parameters.

View Article and Find Full Text PDF

Different methods to utilize the rich library of patterns and behaviors of a chaotic system have been proposed for doing computation or communication. Since a chaotic system is intrinsically unstable and its nearby orbits diverge exponentially from each other, special attention needs to be paid to the robustness against noise of chaos-based approaches to computation. In this paper unstable periodic orbits, which form the skeleton of any chaotic system, are employed to build a model for the chaotic system to measure the sensitivity of each orbit to noise, and to select the orbits whose symbolic representations are relatively robust against the existence of noise.

View Article and Find Full Text PDF

An important goal for synthetic biology is to build robust and tunable genetic regulatory networks that are capable of performing assigned operations, usually in the presence of noise. In this work, a synthetic gene network derived from the bacteriophage λ underpins a reconfigurable logic gate wherein we exploit noise and nonlinearity through the application of the logical stochastic resonance paradigm. This biological logic gate can emulate or "morph" the AND and OR operations through varying internal system parameters in a noisy background.

View Article and Find Full Text PDF

The Virgo interferometer, aimed at detecting gravitational waves, is now in a commissioning phase. Measurements of its optical properties are needed for the understanding of the instrument. We present the techniques developed for the measurement of the optical parameters of Virgo.

View Article and Find Full Text PDF