O-acetylhomoserine sulfhydrylase is one of the key enzymes in biosynthesis of methionine in Clostridioides difficile. The mechanism of γ-substitution reaction of O-acetyl-L-homoserine catalyzed by this enzyme is the least studied among the pyridoxal-5'-phosphate-dependent enzymes involved in metabolism of cysteine and methionine. To clarify the role of active site residues Tyr52 and Tyr107, four mutant forms of the enzyme with replacements of these residues with phenylalanine and alanine were generated.
View Article and Find Full Text PDFTherapeutic enzymes used for the treatment of a wide range of human disorders often suffer from suboptimal pharmacokinetics and stability. Engineering approaches such as encapsulation in micro- and nanocarriers, and replacements of amino acid residues of the native enzyme provide significant potential for improving the performance of enzyme therapy. Here, we develop a nanodelivery system on the base of polyion complex vesicles (PICsomes) that includes methionine γ-lyase (MGL) as a therapeutic enzyme.
View Article and Find Full Text PDF