Serratia marcescens, isolated from the rhizosphere of rice crops, has the potential to improve the acquisition of scarce minerals and provide plant growth. Rice seeds microbiolized with S. marcescens and non-microbiolized seeds were sown in a culture medium enriched with non-labile phosphorus, and the roots were analyzed in WinRhizo.
View Article and Find Full Text PDFWater deficit significantly affects global crop growth and productivity, particularly in water-limited environments, such as upland rice cultivation, reducing grain yield. Plants activate various defense mechanisms during water deficit, involving numerous genes and complex metabolic pathways. Exploring homologous genes that are linked to enhanced drought tolerance through the use of genomic data from model organisms can aid in the functional validation of target species.
View Article and Find Full Text PDFUnlabelled: Drought alters rice morphophysiology and reduces grain yield. This study hypothesized that the combined analysis of morphophysiological and agronomic traits enables a systemic approach to responses to water deficit, allowing the selection of resistance markers to upland rice. The objectives were to evaluate the effects of water deficit applied at the reproductive stage in plant water status, leaf gas exchanges, leaf non-structural carbohydrate contents, and agronomic traits in upland rice genotypes; and to verify if the analyzed variables may be applied to group the genotypes according to their tolerance level.
View Article and Find Full Text PDFBackground: The root system plays a major role in plant growth and development and root system architecture is reported to be the main trait related to plant adaptation to drought. However, phenotyping root systems in situ is not suited to high-throughput methods, leading to the development of non-destructive methods for evaluations in more or less controlled root environments. This study used a root phenotyping platform with a panel of 20 japonica rice accessions in order to: (i) assess their genetic diversity for a set of structural and morphological root traits and classify the different types; (ii) analyze the plastic response of their root system to a water deficit at reproductive phase and (iii) explore the ability of the platform for high-throughput phenotyping of root structure and morphology.
View Article and Find Full Text PDFHigh temperature, moisture content and radiation conditions, common in the tropics, accelerate the physiological post-harvest disorders in beans, affect integument color and bean hardness. This study explored the darkening and hardening mechanisms in carioca type beans during storage. The contrasting genotypes for bean darkening and hardening (BRS Estilo and BRS Pontal: rapid darkening and hardening; BRSMG Madrepérola and CNFC 10467: slow darkening and partially resistant to hardening; and a Canadian genotype of the Pinto Bean type resistant to darkening (negative control)) were evaluated right after harvest and after six months storage at 20.
View Article and Find Full Text PDFIn the Brazilian wet and dry seasons, common beans (Phaseolus vulgaris L.) are grown under rainfed conditions with unexpected episodes of drought and high temperatures. The objective of this study was to evaluate the physiological mechanisms associated with drought adaptation traits in landraces and line/cultivars of beans from the Andean and Mesoamerican gene pools.
View Article and Find Full Text PDFThis work aimed to evaluate the drought tolerance of transformed plants of the cultivar BRSMG Curinga that overexpress the rice phospholipase D α1 (OsPLDα1) gene. The productivity of independent transformation event plants of the OsPLDα1 gene was evaluated in an experiment where 19 days of water deficit were applied at the reproductive stage, a very strict growing condition for upland rice. The non-genetically modified cultivar (NGM) under drought treatment reduced productivity by 89% compared with that under irrigated treatment, whereas transformed plants (PLDα1_E2) reduced productivity by only 41%.
View Article and Find Full Text PDFUpland rice can overcome major challenges through the insertion of silicate fertilization and the presence of plant growth-promoting microorganisms (PGPMs) during its cultivation, as these factors promote an increase in vigor and plant disease resistance. Two consecutive experiments were conducted to evaluate the beneficial effects of silicon fertilization combined with the PGPM, Pseudomonas fluorensces, Burkholderia pyrrocinia, and a pool of Trichoderma asperellum, in upland rice seedlings, cultivar BRS Primavera CL: (a) E1, selecting PGPM type and Si doses for rice growth promotion and leaf blast supression, and (b) E2, evaluating physiological characteristics correlated with mechanisms involved in the higher vegetative growth in highlighted treatments from E1. In E1, 2 Si t ha combined with the application of T.
View Article and Find Full Text PDFMicroorganisms can promote plant growth by increasing phytomass production, nutrient uptake, photosynthesis rates, and grain yield, which can result in higher profits for farmers. However, there is limited information available about the physiological characteristics of lowland rice after treatment with beneficial microorganisms in the tropical region. This study aimed to determine the effects of different beneficial microorganisms and various application forms on phytomass production, gas exchange, and nutrient contents in the lowland rice cultivar 'BRS Catiana' in a tropical region.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2017
Microorganisms are considered a genetic resource with great potential for achieving sustainable development of agricultural areas. The objective of this research was to determine the effect of microorganism application forms on the production of biomass, gas exchange, and nutrient content in upland rice. The experiment was conducted under greenhouse conditions in a completely randomized design in a factorial 7 × 3 + 1, with four replications.
View Article and Find Full Text PDF