Doxorubicin is a chemotherapy widely used to treat several types of cancer, including triple-negative breast cancer. In this work, we use a Bayesian framework to rigorously assess the ability of ten different mathematical models to describe the dynamics of four TNBC cell lines (SUM-149PT, MDA-MB-231, MDA-MB-453, and MDA-MB-468) in response to treatment with doxorubicin at concentrations ranging from 10 to 2500 nM. Each cell line was plated and serially imaged via fluorescence microscopy for 30 days following 6, 12, or 24 h of in vitro drug exposure.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
December 2018
A defining hallmark of cancer is aberrant cell proliferation. Efforts to understand the generative properties of cancer cells span all biological scales: from genetic deviations and alterations of metabolic pathways to physical stresses due to overcrowding, as well as the effects of therapeutics and the immune system. While these factors have long been studied in the laboratory, mathematical and computational techniques are being increasingly applied to help understand and forecast tumor growth and treatment response.
View Article and Find Full Text PDF