Publications by authors named "Anna Christina R Ngo"

As we exploit biological machineries and circuits to redesign nature, it is just important to use efficient cloning strategies and methods to heterologously express the resulting DNA constructs. Golden Gate cloning allows the assembly of multiple fragments in a single reaction, making the process efficient and seamless. Although Golden Gate strategies have already been employed for different organisms, it is still not well-established for Actinobacteria.

View Article and Find Full Text PDF

Microorganisms have great potential for bioremediation as they have powerful enzymes and machineries that can transform xenobiotics. The use of a microbial consortium provides more advantages in application point of view than pure cultures due to cross-feeding, adaptations, functional redundancies, and positive interactions among the organisms. In this study, we screened about 107 isolates for their ability to degrade dyes in aerobic conditions and without additional carbon source.

View Article and Find Full Text PDF

Azo dyes have become a staple in various industries, as colors play an important role in consumer choices. However, these dyes pose various health and environmental risks. Although different wastewater treatments are available, the search for more eco-friendly options persists.

View Article and Find Full Text PDF

Azoreductases require NAD(P)H to reduce azo dyes but the high cost of NAD(P)H limits its application. Formate dehydrogenase (FDH) allows NAD(P) recycling and therefore, the fusion of these two biocatalysts seems promising. This study investigated the changes to the fusion protein involving azoreductase (AzoRo) of Rhodococcus opacus 1CP and FDH (FDH and FDH ) of Candida boidinii in different positions with His-tag as the linker.

View Article and Find Full Text PDF

Azo dyes are important to various industries such as textile industries. However, these dyes are known to comprise toxic, mutagenic, and carcinogenic representatives. Several approaches have already been employed to mitigate the problem such as the use of enzymes.

View Article and Find Full Text PDF

The soil bacteria isolated in this study, including three strains of actinobacteria and one Paraburkholderia sp., showed decolorization activity of azo dyes in the resting cell assay and were shown to use methyl red as the sole carbon source to proliferate. Therefore, their ability to degrade, bioabsorb, or a combination of both mechanism was investigated using the substrate brilliant black.

View Article and Find Full Text PDF

In the present study, we report the draft genome of soil isolate DP-K7 that has the potential to degrade methyl red. The 16S rRNA gene sequencing and whole-genome analysis exposed that the bacterial strain DP-K7 belongs to the species . The genome annotation of the strain DP-K7 through the bioinformatics tool "Prokka" showed that the genome contains 3,010,594 bp with 69.

View Article and Find Full Text PDF

Background: Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants which are highly toxic due to their carcinogenic and mutagenic effects. They are released into the environment by incomplete combustion of solid and liquid fuels, accidental spillage of oils and seepage from industrial activities. One of the promising processes mitigating PAHs is through biodegradation.

View Article and Find Full Text PDF

Background: Discharge of textile dyes into the environment poses a significant threat. They are poorly biodegradable and toxic due to their complex composition and aromatic structures. In the search for alternatives to physical and chemical treatments, biodegradation of synthetic dyes by various microbes is emerging as an effective and promising approach.

View Article and Find Full Text PDF