Publications by authors named "Anna Chernyshova"

Paenibacillus larvae is a spore-forming bacterial entomopathogen and causal agent of the important honey bee larval disease, American foulbrood (AFB). Active infections by vegetative P. larvae are often deadly, highly transmissible, and incurable for colonies but, when dormant, the spore form of this pathogen can persist asymptomatically for years.

View Article and Find Full Text PDF

Analyzing the information-rich content of RNA can help uncover genetic events associated with social insect castes or other social polymorphisms. Here, we exploit a series of cDNA libraries previously derived from whole-body tissue of different castes as well as from three behaviourally distinct populations of the Eastern subterranean termite Reticulitermes flavipes. We found that the number (~0.

View Article and Find Full Text PDF

There is emerging concern regarding the unintentional and often unrecognized antimicrobial properties of "non-antimicrobial" pesticides. This includes insecticides, herbicides, and fungicides commonly used in agriculture that are known to produce broad ranging, off-target effects on beneficial wildlife, even at seemingly non-toxic low dose exposures. Notably, these obscure adverse interactions may be related to host-associated microbiome damage occurring from antimicrobial effects, rather than the presumed toxic effects of pesticides on host tissue.

View Article and Find Full Text PDF

The evolution of sterile helper castes in social insects implies selection on genes that underlie variation in this nonreproductive phenotype. These focal genes confer no direct fitness and are presumed to evolve through indirect fitness effects on the helper's reproducing relatives. This separation of a gene's phenotypic effect on one caste and its fitness effect on another suggests that genes for this and other forms of reproductive altruism are buffered from selection and will thus evolve closer to the neutral rate than genes directly selected for selfish reproduction.

View Article and Find Full Text PDF

Widespread antibiotic usage in apiculture contributes substantially to the global dissemination of antimicrobial resistance and has the potential to negatively influence bacterial symbionts of honey bees (Apis mellifera). Here, we show that routine antibiotic administration with oxytetracycline selectively increased tetB (efflux pump resistance gene) abundance in the gut microbiota of adult workers while concurrently depleting several key symbionts known to regulate immune function and nutrient metabolism such as Frischella perrera and Lactobacillus Firm-5 strains. These microbial changes were functionally characterized by decreased capped brood counts (marker of hive nutritional status and productivity) and reduced antimicrobial capacity of adult hemolymph (indicator of immune competence).

View Article and Find Full Text PDF

The highly organized societies of the Western honey bee Apis mellifera feature a highly reproductive queen at the center of attention and a large cohort of daughters that suppress their own reproduction to help rear more sisters, some of whom become queens themselves. This reproductive altruism is peculiar because in theory it evolves via indirect selection on genes for altruism that are expressed in the sterile workers but not in the reproductive queens. In this study we attempt to situate lists of genes previously implicated in queenright worker sterility into a broader regulatory framework.

View Article and Find Full Text PDF

American foulbrood (AFB) is a highly virulent disease afflicting honey bees (Apis mellifera). The causative organism, Paenibacillus larvae, attacks honey bee brood and renders entire hives dysfunctional during active disease states, but more commonly resides in hives asymptomatically as inactive spores that elude even vigilant beekeepers. The mechanism of this pathogenic transition is not fully understood, and no cure exists for AFB.

View Article and Find Full Text PDF

The search continues for pathogenetically effective measures in autoimmune processes for a number of complications of type 1 diabetes mellitus, in particular, diabetic retinopathy. However, there are few studies of the prognostic and therapeutic values of the systemic autoimmune response in this pathology after transplant of autologous mesenchymal stem cells. Here, we present a 40-year-old patient with complications of type 1 diabetes mellitus (diabetic retinopathy) after mesenchymal stem cell transplant.

View Article and Find Full Text PDF

The study of social breeding systems is often gene focused, and the field of insect sociobiology has been successful at assimilating tools and techniques from molecular biology. One common output from sociogenomic studies is a gene list. Gene lists are readily generated from microarray, RNA sequencing, or other molecular screens that typically aim to prioritize genes based on the differences in their expression.

View Article and Find Full Text PDF

Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa.

View Article and Find Full Text PDF