A series of DNA gyrase inhibitors were designed based on the X-ray structure of a parent thiophene scaffold with the objective to improve biochemical and whole-cell antibacterial activity, while reducing cardiac ion channel activity. The binding mode and overall design hypothesis of one series was confirmed with a co-crystal structure with DNA gyrase. Although some analogs retained both biochemical activity and whole-cell antibacterial activity, we were unable to significantly improve the activity of the series and analogs retained activity against the cardiac ion channels, therefore we stopped optimization efforts.
View Article and Find Full Text PDFA paucity of novel acting antibacterials is in development to treat the rising threat of antimicrobial resistance, particularly in Gram-negative hospital pathogens, which has led to renewed efforts in antibiotic drug discovery. Fluoroquinolones are broad-spectrum antibacterials that target DNA gyrase by stabilizing DNA-cleavage complexes, but their clinical utility has been compromised by resistance. We have identified a class of antibacterial thiophenes that target DNA gyrase with a unique mechanism of action and have activity against a range of bacterial pathogens, including strains resistant to fluoroquinolones.
View Article and Find Full Text PDFA direct and specific comparison of a trifluoromethyl group with the corresponding pentafluorosulfanyl group is made in terms of primary affinity and pharmacokinetic properties.
View Article and Find Full Text PDFA pharmacophore model for triple reuptake inhibitors and the new class of 1-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes were recently reported.
View Article and Find Full Text PDFHerein we report a detailed description of the structure-activity relationships for a novel series of "C-linked" 1,2,4-triazolylazabicyclo[3.1.0]hexanes.
View Article and Find Full Text PDFThe discovery of new highly potent and selective triple reuptake inhibitors is reported. The new classes of 1-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.
View Article and Find Full Text PDFThe discovery of new highly potent and selective dopamine (DA) D(3) receptor antagonists has recently allowed the characterization of the DA D(3) receptor in a range of preclinical animal models of drug addiction. A novel series of 1,2,4-triazol-3-yl-azabicyclo[3.1.
View Article and Find Full Text PDFThe discovery of new highly potent and selective dopamine D3 receptor antagonists has recently permitted characterization of the role of the dopamine D3 receptor in a wide range of preclinical animal models. A novel series of 1,2,4-triazol-3-yl-thiopropyl-tetrahydrobenzazepines demonstrating a high level of D3 affinity and selectivity with an excellent pharmacokinetic profile is reported here. In particular, the pyrazolyl derivative 35 showed good oral bioavailability and brain penetration associated with high potency and selectivity in vitro.
View Article and Find Full Text PDFRamoplanin is a glycolipodepsipeptide antibiotic active against Gram-positive bacteria including vancomycin-resistant enterococci. Ramoplanin inhibits bacterial cell wall biosynthesis by a mechanism different from that of glycopeptides and hence does not show cross-resistance with these antibiotics. The systemic use of ramoplanin has been so far prevented because of its low local tolerability when injected intravenously.
View Article and Find Full Text PDFWithin the continuous quest for the discovery of novel compounds able to treat anxiety and depression, the generation of a pharmacophore model for 5-HT2C receptor antagonists and the discovery of a new class of potent and selective 5-HT2C molecules are reported.
View Article and Find Full Text PDF