Publications by authors named "Anna Ceguerra"

Pair distribution function (PDF) analysis is a powerful technique to understand atomic scale structure in materials science. Unlike X-ray diffraction (XRD)-based PDF analysis, the PDF calculated from electron diffraction patterns (EDPs) using transmission electron microscopy can provide structural information from specific locations with high spatial resolution. The present work describes a new software tool for both periodic and amorphous structures that addresses several practical challenges in calculating the PDF from EDPs.

View Article and Find Full Text PDF

Thermal annealing temperature and time dictate the microstructure of semiconductor materials such as silicon nanocrystals (Si NCs). Herein, atom probe tomography (APT) and density functional theory (DFT) calculations are used to understand the thermal annealing temperature effects on Si NCs grown in a SiOmatrix and the distribution behaviour of boron (B) and phosphorus (P) dopant atoms. The APT results demonstrate that raising the annealing temperature promotes growth and increased P concentration of the Si NCs.

View Article and Find Full Text PDF

Atom probe tomography, and related methods, probe the composition and the three-dimensional architecture of materials. The software tools which microscopists use, and how these tools are connected into workflows, make a substantial contribution to the accuracy and precision of such material characterization experiments. Typically, we adapt methods from other communities like mathematics, data science, computational geometry, artificial intelligence, or scientific computing.

View Article and Find Full Text PDF

Current reconstruction methodologies for atom probe tomography (APT) contain serious geometric artifacts that are difficult to address due to their reliance on empirical factors to generate a reconstructed volume. To overcome this limitation, a reconstruction technique is demonstrated where the analyzed volume is instead defined by the specimen geometry and crystal structure as determined by transmission electron microscopy (TEM) and diffraction acquired before and after APT analysis. APT data are reconstructed using a bottom-up approach, where the post-APT TEM image is used to define the substrate upon which APT detection events are placed.

View Article and Find Full Text PDF

The microstructure of boron (B) and phosphorus (P) codoped silicon (Si) nanocrystals (NCs), cubic boron phosphide (BP) NCs and their mixed NCs (BxSiyPz NCs) has been studied using atom probe tomography (APT), transmission electron microscopy (TEM), and Raman scattering spectroscopy. The BxSiyPz NCs inherit superior properties of B and P codoped Si NCs such as high dispersibility in aqueous media and near infrared (NIR) luminescence and those of cubic BP NCs such as high chemical stability. The microanalyses revealed that BxSiyPz NCs are composed of a crystalline core and an amorphous shell.

View Article and Find Full Text PDF

We define a measure for the accuracy of tomographic reconstruction in atom probe tomography, named here the spatial error index. We demonstrate that this index can be used to compare rigorously the spatial accuracy of various different approaches to the calculation of tomographic reconstruction. This is useful, for example, to evaluate the performance of alternate tomographic reconstruction approaches, and ensures that the comparisons are independent of individual data quality or other instrumental parameters.

View Article and Find Full Text PDF

Current approaches to reconstruction in atom probe tomography produce results that exhibit substantial distortions throughout the analysis depth. This is largely because of the need to apply a multitude of assumptions when estimating the evolution of the tip shape, and other pseudo-empirical reconstruction factors, which vary both across the face of the tip and throughout the analysis depth. We introduce a new crystallography-mediated reconstruction to improve the spatial accuracy and dramatically reduce these in-depth variations.

View Article and Find Full Text PDF

Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process.

View Article and Find Full Text PDF

String-shaped morphologies consisting of preferentially aligned lath-shaped α precipitates were observed in the metastable β Ti-6Cr-5Mo-5V-4Al alloy after deformations at high strain rates and elevated temperatures. The morphology and 3-dimentional arrangement of this feature have been elaborated based on the characterizations via a combination of transmission electron microscopy, transmission kikuchi diffraction and atom probe tomography. The 2D projected morphology of the coalescent α laths observed in the etched samples by SEM depends on the metallographic section.

View Article and Find Full Text PDF

Atom probe tomography was used to analyze self-assembled monolayers of thiophene on different surfaces, including tungsten, platinum, and aluminum, where the tungsten was examined in both pristine and oxidized forms. A glovebag with controlled atmospheres was used to alter the level of oxidation for tungsten. It was shown that different substrates lead to substantial changes in the way thiophene adsorbs on the surface.

View Article and Find Full Text PDF

The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice.

View Article and Find Full Text PDF

Picosecond-pulsed ultraviolet-laser (UV-355 nm) assisted atom probe tomography (APT) was used to analyze protective, thermally grown chromium oxides formed on stainless steel. The influence of analysis parameters on the thermal tail observed in the mass spectra and the chemical composition is investigated. A new parameter termed "laser sensitivity factor" is introduced in order to quantify the effect of laser energy on the extent of the thermal tail.

View Article and Find Full Text PDF

In this article, after a brief introduction to the principles behind atom probe crystallography, we introduce methods for unambiguously determining the presence of crystal planes within atom probe datasets, as well as their characteristics: location; orientation and interplanar spacing. These methods, which we refer to as plane orientation extraction (POE) and local crystallography mapping (LCM) make use of real-space data and allow for systematic analyses. We present here application of POE and LCM to datasets of pure Al, industrial aluminium alloys and doped-silicon.

View Article and Find Full Text PDF

Microscopy encompasses a wide variety of forms and scales. So too does the array of simulation techniques developed that correlate to and build upon microstructural information. Nevertheless, a true nexus between microscopy and atomistic simulations is lacking.

View Article and Find Full Text PDF

This new alternate approach to data processing for analyses that traditionally employed grid-based counting methods is necessary because it removes a user-imposed coordinate system that not only limits an analysis but also may introduce errors. We have modified the widely used "binomial" analysis for APT data by replacing grid-based counting with coordinate-independent nearest neighbour identification, improving the measurements and the statistics obtained, allowing quantitative analysis of smaller datasets, and datasets from non-dilute solid solutions. It also allows better visualisation of compositional fluctuations in the data.

View Article and Find Full Text PDF

In this paper we present new methods for feature analysis in atom probe tomography data that have useful applications in materials characterisation. The analysis works on the principle of Voronoi subvolumes and piecewise linear approximations, and feature delineation based on the distance to the centre of mass of a subvolume (DCOM). Based on the coordinate systems defined by these approximations, two examples are shown of the new types of analyses that can be performed.

View Article and Find Full Text PDF

Two methods for separating the constituent atoms of molecular ions within atom probe tomography reconstructions are presented. The Gaussian Separation Method efficiently deconvolutes molecular ions containing two constituent atoms and is tested on simulated data before being applied to an experimental HSLA steel dataset containing NbN. The Delaunay Separation Method extends separation to larger complex ions and is also tested on simulated data before being applied to an experimental GaAs dataset containing many large (>3 atoms) complex ions.

View Article and Find Full Text PDF

Controllable doping of semiconductor nanowires is critical to realize their proposed applications, however precise and reliable characterization of dopant distributions remains challenging. In this article, we demonstrate an atomic-resolution three-dimensional elemental mapping of pristine semiconductor nanowires on growth substrates by using atom probe tomography to tackle this major challenge. This highly transferrable method is able to analyze the full diameter of a nanowire, with a depth resolution better than 0.

View Article and Find Full Text PDF

The generalized multicomponent short-range order (GM-SRO) parameter has been adapted for the characterization of short-range order within the highly chemically and spatially resolved three-dimensional atomistic images provided by the microscopy technique of atom-probe tomography (APT). It is demonstrated that, despite the experimental limitations of APT, in many cases the GM-SRO results derived from APT data can provide a highly representative description of the atomic scale chemical arrangement in the original specimen. Further, based upon a target set of the GM-SRO parameters, measured from APT experiments, a Monte Carlo algorithm was utilized to simulate statistically equivalent atomistic systems which, unlike APT data, are complete and lattice based.

View Article and Find Full Text PDF

Atom probe tomography (APT) represents a significant step toward atomic resolution microscopy, analytically imaging individual atoms with highly accurate, though imperfect, chemical identity and three-dimensional (3D) positional information. Here, a technique to retrieve crystallographic information from raw APT data and restore the lattice-specific atomic configuration of the original specimen is presented. This lattice rectification technique has been applied to a pure metal, W, and then to the analysis of a multicomponent Al alloy.

View Article and Find Full Text PDF

The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional chi(2) statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, mu, is shown to normalize chi(2) with respect to sample size over an order of magnitude.

View Article and Find Full Text PDF