Publications by authors named "Anna C-C Jang"

Enzyme-catalyzed proximity labeling is a potent technique for the discernment of subtle molecular interactions and subcellular localization, furnishing contextual insights into the protein of interest within cells. Although ascorbate peroxidase2 (APEX2) has proven effective in this approach when overexpressed, its compatibility with endogenous proteins remains untested. We improved this technique for studying native protein-protein interactions in live ovary tissue.

View Article and Find Full Text PDF

Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) is involved in many biological functions. However, the mechanisms of PIP2 in collective cell migration remain elusive. This study highlights the regulatory role of cytidine triphosphate synthase (CTPsyn) in collective border cell migration through regulating the asymmetrical distribution of PIP2.

View Article and Find Full Text PDF

Collective migration is important to embryonic development and cancer metastasis, but migratory and nonmigratory cell fate discrimination by differential activity of signal pathways remains elusive. In oogenesis, Jak/Stat signaling patterns the epithelial cell fates in early egg chambers but later renders motility to clustered border cells. How Jak/Stat signal spatiotemporally switches static epithelia to motile cells is largely unknown.

View Article and Find Full Text PDF

Dengue fever is one of the most severe viral diseases transmitted by Aedes mosquitoes, with traditional approaches of disease control proving insufficient to prevent significant disease burden. Release of Wolbachia-transinfected mosquitoes offers a promising alternative control methodologies; Wolbachia-transinfected female Aedes aegypti demonstrate reduced dengue virus transmission, whilst Wolbachia-transinfected males cause zygotic lethality when crossed with uninfected females, providing a method for suppressing mosquito populations. Although highly promising, the delicate nature of population control strategies and differences between local species populations means that controlled releases of Wolbachia-transinfected mosquitoes cannot be performed without extensive testing on specific local Ae.

View Article and Find Full Text PDF

The evolutionarily conserved Hippo kinase signaling cascade governs cell proliferation, tissue differentiation and organ size, and can promote tumor growth and cancer metastasis when dysregulated. Unlike conventional signaling pathways driven by ligand-receptor binding to initiate downstream cascades, core Hippo kinases are activated not only by biochemical cues but also by mechanical ones generated from altered cell shape, cell polarity, cell-cell junctions or cell-extracellular matrix adhesion. In this review, we focus on recent advances showing how mechanical force acts through the actin cytoskeleton to regulate the Hippo pathway during cell movement and cancer invasion.

View Article and Find Full Text PDF

In collective cell migration, directional protrusions orient cells in response to external cues, which requires coordinated polarity among the migrating cohort. However, the molecular mechanism has not been well defined. Drosophila border cells (BCs) migrate collectively and invade via the confined space between nurse cells, offering an in vivo model to examine how group polarity is organized.

View Article and Find Full Text PDF
Article Synopsis
  • Asymmetric division of stem cells leads to both self-renewal and differentiation, posing challenges in understanding how specific adult tissue stem cells develop into various cell types.
  • Drosophila follicle stem cells serve as a valuable model to investigate these processes, with the protein Castor (Cas) playing a crucial role in maintaining stem cells and specifying the fate of differentiated cells.
  • The study reveals how Cas and Eyes absent (Eya) interact through Hedgehog signaling to regulate cell differentiation, providing insights into the early stages of polar and stalk cell development.
View Article and Find Full Text PDF

During development, elaborate patterns of cell differentiation and movement must occur in the correct locations and at the proper times. Developmental timing has been studied less than spatial pattern formation, and the mechanisms integrating the two are poorly understood. Border-cell migration in the Drosophila ovary occurs specifically at stage 9.

View Article and Find Full Text PDF

This protocol describes a method for the dissection of egg chambers from intact Drosophila females and culture conditions that permit live imaging of them, with a particular emphasis on stage 9. This stage of development is characterized by oocyte growth and patterning, outer follicle cell rearrangement and migration of border cells. Although in vitro culture of egg chambers of later developmental stages has long been possible, until recently stage 9 egg chambers could only be kept alive for short periods, did not develop normally, and border cell migration failed entirely.

View Article and Find Full Text PDF

Cell motility makes essential contributions to normal embryonic development and homeostasis. It is also thought to contribute in important ways to tumor metastasis. Because of this dual importance, cell migration has been extensively studied.

View Article and Find Full Text PDF