Mechanisms of resilience against tau pathology in individuals across the Alzheimer's disease spectrum are insufficiently understood. Longitudinal data are necessary to reveal which factors relate to preserved cognition (i.e.
View Article and Find Full Text PDFBackground: Cognitive reserve and resilience are terms used to explain interindividual variability in maintenance of cognitive health in response to adverse factors, such as brain pathology in the context of aging or neurodegenerative disorders. There is substantial interest in identifying tractable substrates of resilience to potentially leverage this phenomenon into intervention strategies. One way of operationalizing cognitive resilience that has gained popularity is the residual method: regressing cognition on an adverse factor and using the residual as a measure of resilience.
View Article and Find Full Text PDFObjective: To investigate relationships of education and intracranial volume (ICV) (factors related to cognitive and brain reserve, respectively) with cognitive trajectories and mortality in individuals with biomarker-defined Alzheimer disease (AD).
Methods: We selected 1,298 β-amyloid-positive memory clinic patients with subjective cognitive decline (SCD, n = 142), mild cognitive impairment (MCI, n = 274), or AD dementia (n = 882) from the Amsterdam Dementia Cohort. All participants underwent baseline MRI and neuropsychological assessment, and 68% received cognitive follow-up (median 2.
Background And Objective: There is a lack of consensus on how to optimally define and measure resistance and resilience in brain and cognitive aging. Residual methods use residuals from regression analysis to quantify the capacity to avoid (resistance) or cope (resilience) "better or worse than expected" given a certain level of risk or cerebral damage. We reviewed the rapidly growing literature on residual methods in the context of aging and Alzheimer disease (AD) and performed meta-analyses to investigate associations of residual method-based resilience and resistance measures with longitudinal cognitive and clinical outcomes.
View Article and Find Full Text PDFThe clinical presentation of Alzheimer's disease (AD) varies widely across individuals but the neurobiological mechanisms underlying this heterogeneity are largely unknown. Here, we compared regional gray matter (GM) volumes and associated gene expression profiles between cognitively-defined subgroups of amyloid-β positive individuals clinically diagnosed with AD dementia (age: 66 ± 7, 47% male, MMSE: 21 ± 5). All participants underwent neuropsychological assessment with tests covering memory, executive-functioning, language and visuospatial-functioning domains.
View Article and Find Full Text PDFObjective: To investigate the relationship between cognitive reserve (CR) and clinical progression across the Alzheimer disease (AD) spectrum.
Methods: We selected 839 β-amyloid (Aβ)-positive participants with normal cognition (NC, n = 175), mild cognitive impairment (MCI, n = 437), or AD dementia (n = 227) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). CR was quantified using standardized residuals (W scores) from a (covariate-adjusted) linear regression with global cognition (13-item Alzheimer's Disease Assessment Scale-cognitive subscale) as an independent variable of interest, and either gray matter volumes or white matter hyperintensity volume as dependent variables.
Brain reserve is a concept introduced to explain why Alzheimer's disease (AD) patients with a greater brain volume prior to onset of pathology generally have better clinical outcomes. In this review, we provide a historical background of the emergence of brain reserve and discuss several aspects that need further clarification, including the dynamic or static nature of the concept and its underlying mechanisms and clinical effect. We then describe how brain reserve has been operationalized over the years, and critically evaluate the use of intracranial volume (ICV) as the most widely used proxy for brain reserve.
View Article and Find Full Text PDFObjective: To examine cross-sectional effects of cognitive reserve (CR) and brain reserve (BR) on cognition across the spectrum of Alzheimer disease (AD).
Methods: We included 663 AD biomarker-positive participants with dementia (probable AD, n = 462) or in the predementia stages (preclinical/prodromal AD, n = 201). Education was used as a proxy of CR and intracranial volume as a proxy of BR.
Cognitive reserve (CR) explains interindividual differences in the ability to maintain cognitive function in the presence of neuropathology. We developed a neuroimaging approach including a measure of brain atrophy and cognition to capture this construct. In a group of 511 Alzheimer's disease (AD) biomarker-positive subjects in different stages across the disease spectrum, we performed 3T magnetic resonance imaging and predicted gray matter (GM) volume in each voxel based on cognitive performance (i.
View Article and Find Full Text PDF