Hydrotris(triazolyl)borate (Ttz) ligands form CuNO(x) (x = 2, 3) complexes for structural and functional models of copper nitrite reductase. These complexes have distinct properties relative to complexes of hydrotris(pyrazolyl)borate (Tp) and neutral tridentate N-donor ligands. The electron paramagnetic resonance spectra of five-coordinate copper complexes show rare nitrogen superhyperfine couplings with the Ttz ligand, indicating strong σ donation.
View Article and Find Full Text PDFIn this paper, the synthesis, structural and spectroscopic characterization of a series of new Ru(III)-nitrosyls of {RuNO}(6) type with the coligand TPA (tris(2-pyridylmethyl)amine) are presented. The complex [Ru(TPA)Cl(2)(NO)]ClO(4) (2) was prepared from the Ru(III) precursor [Ru(TPA)Cl(2)]ClO(4) (1) by simple reaction with NO gas. This led to the surprising displacement of one of the pyridine (py) arms of TPA by NO (instead of the substitution of a chloride anion by NO), as confirmed by X-ray crystallography.
View Article and Find Full Text PDFThe Mn-nitrosyl complexes [Mn(PaPy(3))(NO)](ClO(4)) (1; PaPy(3)(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) and [Mn(PaPy(2)Q)(NO)](ClO(4)) (2, PaPy(2)Q(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinoline-2-carboxamide) show a remarkable photolability of the NO ligand upon irradiation of the complexes with UV-vis-NIR light [Eroy-Reveles, A. A.; Leung, Y.
View Article and Find Full Text PDFThe reduction of nitrite to nitric oxide in dissimilatory denitrification is carried out by copper nitrite reductases (CuNIRs) via a type 2 copper site. Extended studies on CuNIRs in combination with model complexes have allowed for the establishment of two potential mechanisms for this transformation. Recent experimental and computational results have revealed further details of this process.
View Article and Find Full Text PDFDensity functional theory calculations were used to investigate the binding mode of copper(I) nitrosyl (Cu(I)-NO) in copper nitrite reductase (CuNIR). The end-on Cu(I)-NO geometry (2) was found to be the global energy minimum, while the side-on binding mode (1) corresponds to a local minimum. Isoleucine-257 severely interacts sterically with the Cu(I)-NO unit when bound end-on but not in the side-on case.
View Article and Find Full Text PDF