Publications by authors named "Anna C Brezny"

2-Fluorenyl benzoates were recently shown to undergo C-H bond oxidation through intramolecular proton transfer coupled with electron transfer to an external oxidant. Kinetic analysis revealed unusual rate-driving force relationships. Our analysis indicated a mechanism of multi-site concerted proton-electron transfer (MS-CPET) for all of these reactions.

View Article and Find Full Text PDF

Electrons added to TiO and other semiconductors often occupy trap states, whose reactivity can determine the catalytic and stoichiometric chemistry of the material. We previously showed that reduced aqueous colloidal TiO nanoparticles have two distinct classes of thermally-equilibrated trapped electrons, termed Red/ and Blue/ . Presented here are parallel optical and electron paramagnetic resonance (EPR) kinetic studies of the reactivity of these electrons with solution-based oxidants.

View Article and Find Full Text PDF

Multiple H2O2-forming mechanisms are accessible in Fe(porphyrin)-catalysed oxygen reduction, a key reaction in both fuel cell technologies and oxygen-utilizing enzymes. Our kinetic analysis reveals that the porphyrin secondary structure dictates the pathway for H2O2 formation. This approach is generalizable to other electrocatalytic processes and provides insight into the selectivity-determining steps.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) is the cathode reaction in fuel cells and its selectivity for water over hydrogen peroxide production is important for these technologies. Iron porphyrin catalysts have long been studied for the ORR, but the origins of their selectivity are not well understood because the selectivity-determining step(s) usually occur after the rate-determining step. We report here the effects of acid concentration, as well as other solution conditions such as acid p, on the HO/HO selectivity in electrocatalytic ORR by iron(tetramesitylporphyrin) (Fe(TMP)) in DMF.

View Article and Find Full Text PDF

The catalytic reduction of O to HO is important for energy transduction in both synthetic and natural systems. Herein, we report a kinetic and thermochemical study of the oxygen reduction reaction (ORR) catalyzed by iron tetraphenylporphyrin (Fe(TPP)) in N, N'-dimethylformamide using decamethylferrocene as a soluble reductant and para-toluenesulfonic acid ( pTsOH) as the proton source. This work identifies and characterizes catalytic intermediates and their thermochemistry, providing a detailed mechanistic understanding of the system.

View Article and Find Full Text PDF

In the nearly 80 years since catalytic hydroformylation was first reported, hundreds of billions of pounds of aldehyde have been produced by this atom efficient one-carbon homologation of alkenes in the presence of H and CO. Despite the economy and demonstrated scalability of hydroformylation, the enantioselective process (asymmetric hydroformylation, AHF) currently does not contribute significantly to the production of chiral aldehydes and their derivatives. Current impediments to practical application of AHF include low diversity of chiral ligands that provide effective rates and selectivities, limited exploration of substrate scope, few demonstrations of efficient flow reactor processes, and incomplete mechanistic understanding of the factors that control reaction selectivity and rate.

View Article and Find Full Text PDF

Rhodium bis(diazaphospholane) (BDP) catalyzed hydroformylation of styrene is sensitive to CO concentration, and drastically different kinetic regimes are affected by modest changes in gas pressure. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) has enabled the observation of changes in catalyst speciation in these different regimes. The apparent discrepancy between catalyst speciation and product distribution led us to report the first direct, noncatalytic quantitative observation of hydrogenolysis of acyl dicarbonyls.

View Article and Find Full Text PDF

In the absence of H2, reaction of [Rh(H) (CO)2(BDP)] [BDP = bis(diazaphospholane)] with hydroformylation substrates vinyl acetate, allyl cyanide, 1-octene, and trans-1-phenyl-1,3-butadiene at low temperatures and pressures with passive mixing enables detailed NMR spectroscopic characterization of rhodium acyl and, in some cases, alkyl complexes of these substrates. For trans-1-phenyl-1,3-butadiene, the stable alkyl complex is an η(3)-allyl complex. Five-coordinate acyl dicarbonyl complexes appear to be thermodynamically preferred over the four-coordinate acyl monocarbonyls at low temperatures and one atmosphere of CO.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1oobas2uoqvktfe9hmlbblt61pb48e84): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once