Background: Ethyl acetate (CHO) and hydrogen (H) are industrially relevant compounds that preferably are produced via sustainable, non-petrochemical production processes. Both compounds are volatile and can be produced by Escherichia coli before. However, relatively low yields for hydrogen are obtained and a mix of by-products renders the sole production of hydrogen by micro-organisms unfeasible.
View Article and Find Full Text PDFBackground: Genetic engineering of microorganisms has become a common practice to establish microbial cell factories for a wide range of compounds. Ethyl acetate is an industrial solvent that is used in several applications, mainly as a biodegradable organic solvent with low toxicity. While ethyl acetate is produced by several natural yeast species, the main mechanism of production has remained elusive until the discovery of Eat1 in .
View Article and Find Full Text PDFBackground: Ethyl acetate is a widely used industrial solvent that is currently produced by chemical conversions from fossil resources. Several yeast species are able to convert sugars to ethyl acetate under aerobic conditions. However, performing ethyl acetate synthesis anaerobically may result in enhanced production efficiency, making the process economically more viable.
View Article and Find Full Text PDFSustainable production of bulk chemicals is one of the major challenges in the chemical industry, particularly due to their low market prices. This includes short and medium chain esters, which are used in a wide range of applications, for example fragrance compounds, solvents, lubricants or biofuels. However, these esters are produced mainly through unsustainable, energy intensive processes.
View Article and Find Full Text PDF