Communication in biological systems typically involves enzymatic reactions that occur within fluids confined between the soft, elastic walls of bio-channels and chambers. Through the inherent transformation of chemical to mechanical energy, the fluids can be driven to flow within the confined domains. Through fluid-structure interactions, the confining walls in turn are deformed by and affect this fluid flow.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
In the presence of appropriate substrates, surface-anchored enzymes can act as pumps and propel fluid through microchambers. Understanding the dynamic interplay between catalytic reactions and fluid flow is vital to enhancing the accuracy and utility of flow technology. Through a combination of experimental observations and numerical modeling, we show that coupled enzyme pumps can exhibit flow enhancement, flow suppression, and changes in the directionality (reversal) of the fluid motion.
View Article and Find Full Text PDFDeformable, elastic materials that buckle in response to external stimuli can display "snap-through", which involves a transition between different, stable buckled states. Snap-through produces a quick release of stored potential energy, and thus can provide fast actuation for soft robots and other flexible devices. Liquid crystalline elastomers (LCEs) exposed to light undergo a phase transition and a concomitant mechanical deformation, allowing control of snap-through for rapid, large amplitude actuation.
View Article and Find Full Text PDFEnzymatic reactions in solution drive the convection of confined fluids throughout the enclosing chambers and thereby couple the processes of reaction and convection. In these systems, the energy released from the chemical reactions generates a force, which propels the fluids' spontaneous motion. Here, we use theoretical and computational modeling to determine how reaction-convection can be harnessed to tailor and control the dynamic behavior of soft matter immersed in solution.
View Article and Find Full Text PDFNanoscale enzymes anchored to surfaces act as chemical pumps by converting chemical energy released from enzymatic reactions into spontaneous fluid flow that propels entrained nano- and microparticles. Enzymatic pumps are biocompatible, highly selective, and display unique substrate specificity. Utilizing these pumps to trigger self-propelled motion on the macroscale has, however, constituted a significant challenge and thus prevented their adaptation in macroscopic fluidic devices and soft robotics.
View Article and Find Full Text PDFBiological systems spontaneously convert energy input into the actions necessary to survive. Motivated by the efficacy of these processes, researchers aim to forge materials systems that exhibit the self-sustained and autonomous functionality found in nature. Success in this effort will require synthetic analogues of the following: a metabolism to generate energy, a vasculature to transport energy and materials, a nervous system to transmit 'commands', a musculoskeletal system to translate commands into physical action, regulatory networks to monitor the entire enterprise, and a mechanism to convert 'nutrients' into growing materials.
View Article and Find Full Text PDFBy modeling gels growing in confined environments, we uncover a biomimetic feedback mechanism between the evolving gel and confining walls that enables significant control over the properties of the grown gel. Our new model describes the monomer adsorption, polymerization and cross-linking involved in forming new networks and the resultant morphology and mechanical behavior of the grown gel. Confined between two hard walls, a thin, flat "parent" gel undergoes buckling; removal of the walls returns the gel to the flat structure.
View Article and Find Full Text PDFThe inherent coupling of chemical and mechanical behavior in fluid-filled microchambers enables the fluid to autonomously perform work, which in turn can direct the self-organization of objects immersed in the solution. Using theory and simulations, we show that the combination of diffusioosmotic and buoyancy mechanisms produce independently controlled, respective fluid flows: one generated by confining surfaces and the other in the bulk of the solution. With both flows present, the fluid can autonomously join 2D, disconnected pieces to a chemically active, "sticky" base and then fold the resulting layer into regular 3D shapes (e.
View Article and Find Full Text PDFHydrogels are water-swollen, typically soft networks useful as biomaterials and in other fields of biotechnology. Hydrogel networks capable of sensing and responding to external perturbations, such as light, temperature, pH, or force, are useful across a wide range of applications requiring on-demand cross-linking or dynamic changes. Thus far, although mechanophores have been described as strain-sensitive reactive groups, embedding this type of force-responsiveness into hydrogels is unproven.
View Article and Find Full Text PDFThe intertwining of strands into 3D spirals is ubiquitous in biology, enabling functions from information storage to maintenance of cell structure and directed locomotion. In synthetic systems, entwined fibers can provide superior mechanical properties and act as artificial muscle or structural reinforcements. Unlike structures in nature, the entwinement of synthetic materials typically requires application of an external stimulus, such as mechanical actuation, light, or a magnetic field.
View Article and Find Full Text PDFThe inhibitor-promoter feedback loop is a vital component in regulatory pathways that controls functionality in living systems. In this loop, the production of chemical at one site promotes the production of chemical at another site, but inhibits the production of . In solution, differences in the volumes of the reactants and products of this reaction can generate buoyancy-driven fluid flows, which will deform neighboring soft material.
View Article and Find Full Text PDFThrough experiments and simulations, we show that fuel-free photoactive TiO microparticles can form mobile, coherent swarms in the presence of UV light, which track the subsequent movement of an irradiated spot in a fluid-filled microchamber. Multiple concurrent propulsion mechanisms (electrolyte diffusioosmotic swarming, photocatalytic expansion, and photothermal migration) control the rich collective behavior of the swarms, which provide a strategy to reversely manipulate cargo. The active swarms can autonomously pick up groups of inert particles, sort them by size, and sequentially release the sorted particles at particular locations in the microchamber.
View Article and Find Full Text PDFSurfaces with tunable microscale textures are vital in a large variety of technological applications, including heat transfer, antifouling and adhesion. To facilitate such broad-scale use, there is a need to create surfaces that undergo reconfigurable changes in topology and thus, enable switchable functionality. To date, there is a relative dearth of methods for engineering surfaces that can be actuated to change topography over a range of length scales, and hence, form tunable hierarchically structured layers.
View Article and Find Full Text PDFCatalytic reactions on flexible sheets generate fluid flows that transform the shape of the sheet, which in turn modifies the flow. These complex interactions make computer models vital for designing and harnessing these feedback loops to create soft active matter that autonomously performs self-sustained mechanical work.
View Article and Find Full Text PDFLiving cilia stir, sweep and steer via swirling strokes of complex bending and twisting, paired with distinct reverse arcs. Efforts to mimic such dynamics synthetically rely on multimaterial designs but face limits to programming arbitrary motions or diverse behaviours in one structure. Here we show how diverse, complex, non-reciprocal, stroke-like trajectories emerge in a single-material system through self-regulation.
View Article and Find Full Text PDFIn chemical solutions, the products of catalytic reactions can occupy different volumes compared to the reactants and thus give rise to local density variations in the fluid. These density variations generate solutal buoyancy forces, which are exerted on the fluid and thus "pump" the fluid to flow. Herein, we examine if the reaction-induced pumping accelerates the chemical reaction by transporting the reactants to the catalyst at a rate faster than passive diffusion.
View Article and Find Full Text PDFUsing theory and simulation, we model the mechanical behavior of gels that encompass loops and dangling chain ends. If the loops remain folded and dangling ends are chemically inert, then these topological features just serve as defects. If, however, the loops unfold to expose the hidden ("cryptic") binding sites and the ends of the dangling chains are reactive, these moieties can form bonds that improve the gel's mechanical properties.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2021
Computational models that reveal the structural response of polymer gels to changing, dissolved reactive chemical species would provide useful information about dynamically evolving environments. However, it remains challenging to devise one computational approach that can capture all the interconnected chemical events and responsive structural changes involved in this multi-stage, multi-component process. Here, we augment the dissipative particle dynamics (DPD) method to simulate the reaction of a gel with diffusing, dissolved chemicals to form kinetically stable complexes, which in turn cause concentration-dependent deformation of the gel.
View Article and Find Full Text PDFUsing theory and simulation, we analyzed the resonant amplification of chemical oscillations that occur due to externally imposed oscillatory fluid flows. The chemical reactions are promoted by two enzyme-coated patches located sequentially on the inner surface of a pipe that transports the enclosed chemical solution. In the case of diffusion-limited systems, the period of oscillations in chemical reaction networks is determined by the rate of the chemical transport, which is diffusive in nature and, therefore, can be effectively accelerated by the imposed fluid flows.
View Article and Find Full Text PDFInterpenetrating and random copolymer networks are vital in a number of industrial applications, including the fabrication of automotive parts, damping materials, and tissue engineering scaffolds. We develop a theoretical model for a process that enables the controlled growth of interpenetrating network (IPNs), or a random copolymer network (RCN) of specified size and mechanical properties. In this process, a primary gel "seed" is immersed into a solution containing the secondary monomer and crosslinkers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2021
The synchronization of self-oscillating systems is vital to various biological functions, from the coordinated contraction of heart muscle to the self-organization of slime molds. Through modeling, we design bioinspired materials systems that spontaneously form shape-changing self-oscillators, which communicate to synchronize both their temporal and spatial behavior. Here, catalytic reactions at the bottom of a fluid-filled chamber and on mobile, flexible sheets generate the energy to "pump" the surrounding fluid, which also transports the immersed sheets.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
To fully realize the potential of microfluidic platforms as useful diagnostic tools, the devices must be sufficiently portable that they function at the point-of-care, as well as remote and resource-poor locations. Using both modeling and experiments, here we develop a standalone fluidic device that is driven by light and operates without the need for external electrical or mechanical pumps. The light initiates a photochemical reaction in the solution; the release of chemical energy from the reaction is transduced into the spontaneous motion of the surrounding fluid.
View Article and Find Full Text PDFDesign of slender artificial materials and morphogenesis of thin biological tissues typically involve stimulation of isolated regions (inclusions) in the growing body. These inclusions apply internal stresses on their surrounding areas that are ultimately relaxed by out-of-plane deformation (buckling). We utilize the Föppl-von Kármán model to analyze the interaction between two circular inclusions in an infinite plate that their centers are separated a distance of 2ℓ.
View Article and Find Full Text PDFUsing analytical and computational models, we determine how externally imposed flows affect chemical oscillations that are generated by two enzyme-coated patches within a fluid-filled millimeter sized channel. The fluid flow affects the advective contribution to the flux of chemicals in the channel and, thereby, modifies the chemical reactions. Here, we show that changes in the flow velocity permit control over the chemical oscillations by broadening the range of parameters that give rise to oscillatory behavior, increasing the frequency of oscillations, or suppressing the oscillations all together.
View Article and Find Full Text PDFThe design of remotely programmable microfluidic systems with controlled fluid flow and particle transport is a significant challenge. Herein, we describe a system that harnesses the intrinsic thermal response of a fluid to spontaneously pump solutions and regulate the transport of immersed microparticles. Irradiating a silver-coated channel with ultraviolet (UV) light generates local convective vortexes, which, in addition to the externally imposed flow, can be used to guide particles along specific trajectories or to arrest their motion.
View Article and Find Full Text PDF