Publications by authors named "Anna Buschart"

As molecular interactions of plants with N2 -fixing endophytes are largely uncharacterized, we investigated whether the common signaling pathway (CSP) shared by root nodule symbioses (RNS) and arbuscular mycorrhizal (AM) symbioses may have been recruited for the endophytic Azoarcus sp.-rice (Oryza sativa) interaction, and combined this investigation with global approaches to characterize rice root responses to endophytic colonization. Putative homologs of genes required for the CSP were analyzed for their putative role in endophytic colonization.

View Article and Find Full Text PDF

Background: This is the third in a series of publications presenting formal method validation for biospecimen processing in the context of accreditation in laboratories and biobanks. We report here optimization of a stool processing protocol validated for fitness-for-purpose in terms of downstream DNA-based analyses.

Methods: Stool collection was initially optimized in terms of sample input quantity and supernatant volume using canine stool.

View Article and Find Full Text PDF

The fungicide fludioxonil is widely used in agriculture. Residua of this fungicide are occasionally detected in fruits and can therefore be ingested by humans. The human fungal pathogen Candida albicans expresses the target of fludioxonil, Nik1p, a type III histidine kinase involved in stress response.

View Article and Find Full Text PDF

Azoarcus sp. strain BH72 is an endophytic betaproteobacterium able to colonize rice roots without induction of visible disease symptoms. BH72 possesses one polar flagellum.

View Article and Find Full Text PDF

Signal transduction systems comprising histidine kinases are suggested as new molecular targets of antibiotics. The important human fungal pathogen Candida albicans possesses three histidine kinases, one of which is the type III histidine kinase CaNik1, which activates the MAP kinase Hog1. We established a screening system for inhibitors of this class of histidine kinases by functional expression of the CaNIK1 gene in S.

View Article and Find Full Text PDF