Acute intoxication by toluene usually follows intentional inhalation to achieve a "high", which may lead to repeated use due to toluene's reinforcing properties. In both acute and chronic intoxication brain function is primarily affected. Neuronal and glial elements participate in toluene's reinforcing properties and chronic toxicity, yet the targets underlying acute toxicity remain unknown.
View Article and Find Full Text PDFBackground: Ethyl alcohol and cannabis are widely used recreational substances with distinct effects on the brain. These drugs increase accidental injuries requiring treatment under anesthesia. Moreover, alcohol and cannabis are often used in anesthetized rodents for biomedical research.
View Article and Find Full Text PDFProgesterone (≥1 µM) is used in recovery of cerebral ischemia, an effect likely contributed to by cerebrovascular dilation. The targets of this progesterone action are unknown. We report that micromolar (µM) progesterone activates mouse cerebrovascular myocyte BK channels; this action is lost in β mice myocytes and in lipid bilayers containing BK α subunit homomeric channels but sustained on β/β-containing heteromers.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2023
Moderate-to-heavy episodic ("binge") drinking is the most common form of alcohol consumption in the United States. Alcohol at binge drinking concentrations reduces brain artery diameter in vivo and in vitro in many species including rats, mice, and humans. Despite the critical role played by brain vessels in maintaining neuronal function, there is a shortage of methodologies to simultaneously assess neuron and blood vessel function in deep brain regions.
View Article and Find Full Text PDFDespite the significant number of people who may be taking pregnenolone supplements while drinking alcohol (ethanol), the widely documented cerebrovascular actions of pregnenolone and ethanol, and the critical dependence of cerebrovascular function on cerebral artery diameter, there are no studies addressing the effect of pregnenolone + ethanol in combination on cerebral artery diameter. We investigated this by evaluating the effect of this combination on middle cerebral artery diameter in male and female C57BL/6J mice, both and . The use of de-endothelialized, pressurized middle cerebral artery segments allowed us to conduct a concentration-response study of constriction induced by pregnenolone ± ethanol, in which drug action could be evaluated independently of circulating and endothelial factors.
View Article and Find Full Text PDFAdv Drug Alcohol Res
February 2023
Fetal alcohol syndrome represents the leading known preventable cause of mental retardation. FAS is on the most severe side of fetal alcohol spectrum disorders that stem from the deleterious effects of prenatal alcohol exposure. Affecting as many as 1 to 5 out of 100 children, FASD most often results in brain abnormalities that extend to structure, function, and cerebral hemodynamics.
View Article and Find Full Text PDFCalcium/voltage-activated potassium channels (BK) control smooth muscle (SM) tone and cerebral artery diameter. They include channel-forming α and regulatory β subunits, the latter being highly expressed in SM. Both subunits participate in steroid-induced modification of BK activity: β provides recognition for estradiol and cholanes, resulting in BK potentiation, whereas α suffices for BK inhibition by cholesterol or pregnenolone.
View Article and Find Full Text PDFCa/voltage-gated, large conductance K channels (BK) are formed by homotetrameric association of α (slo1) subunits. Their activity, however, is suited to tissue-specific physiology largely due to their association with regulatory subunits (β and γ types), chaperone proteins, localized signaling, and the channel's lipid microenvironment. PIP and cholesterol can modulate BK activity independently of downstream signaling, yet activating Ca levels and regulatory subunits control ligand action.
View Article and Find Full Text PDFInwardly rectifying potassium (Kir) channels are integral membrane proteins that control the flux of potassium ions across cell membranes and regulate membrane permeability. All eukaryotic Kir channels require the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P) for activation. In recent years, it has become evident that the function of many members of this family of channels is also mediated by another essential lipid-cholesterol.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2023
Alcohol intake leading to blood ethanol concentrations (BEC) ≥ legal intoxication modifies brain blood flow with increases in some regions and decreases in others. Brain regions receive blood from the Willis' circle branches: anterior, middle (MCA) and posterior cerebral (PCA), and basilar (BA) arteries. Rats and mice have been used to identify the targets mediating ethanol-induced effects on cerebral arteries, with conclusions being freely interchanged, albeit data were obtained in different species/arterial branches.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
December 2022
Excessive cholesterol constitutes a major risk factor for vascular disease. Within cells, cholesterol is distributed in detergent-sensitive and detergent-resistant fractions, with the largest amount of cholesterol residing in cellular membranes. We set out to determine whether various arteries differ in their ability to accumulate esterified and non-esterified cholesterol in detergent-sensitive versus detergent-resistant fractions throughout the course of a high-cholesterol diet.
View Article and Find Full Text PDFCannabis Cannabinoid Res
February 2024
Alcohol (ethanol) and cannabis are among the most widely used recreational drugs in the world. With increased efforts toward legalization of cannabis, there is an alarming trend toward the concomitant (including simultaneous) use of cannabis products with alcohol for recreational purpose. While each drug possesses a distinct effect on cerebral circulation, the consequences of their simultaneous use on cerebral artery diameter have never been studied.
View Article and Find Full Text PDFLarge conductance, calcium/voltage-gated potassium channels (BK) regulate critical body processes, including neuronal, secretory and smooth muscle (SM) function. While BK-forming alpha subunits are ubiquitous, accessory beta1 subunits are highly expressed in SM. This makes beta1 an attractive target for pharmaceutical development to treat SM disorders, such as hypertension or cerebrovascular spasm.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2022
SignificanceCholesterol is one of the main components found in plasma membranes and is involved in lipid-dependent signaling enabled by integral membrane proteins such as inwardly rectifying potassium (Kir) channels. Similar to other ion channels, most of the Kir channels are down-regulated by cholesterol. One of the very few notable exceptions is Kir3.
View Article and Find Full Text PDFCalcium- and voltage-gated K channels of large conductance (BKs) are expressed in the cell membranes of all excitable tissues. Currents mediated by BK channel-forming slo1 homotetramers are consistently inhibited by increases in membrane cholesterol (CLR). The molecular mechanisms leading to this CLR action, however, remain unknown.
View Article and Find Full Text PDFPregnenolone is a neurosteroid that modulates glial growth and differentiation, neuronal firing, and several brain functions, these effects being attributed to pregnenolone actions on the neurons and glial cells themselves. Despite the vital role of the cerebral circulation for brain function and the fact that pregnenolone is a vasoactive agent, pregnenolone action on brain arteries remain unknown. Here, we obtained in vivo concentration response curves to pregnenolone on middle cerebral artery (MCA) diameter in anesthetized male and female C57BL/6J mice.
View Article and Find Full Text PDFCalcium-/voltage-gated, large-conductance potassium channels (BKs) control critical physiological processes, including smooth muscle contraction. Numerous observations concur that elevated membrane cholesterol (CLR) inhibits the activity of homomeric BKs consisting of channel-forming alpha subunits. In mammalian smooth muscle, however, native BKs include accessory KCNMB1 (β) subunits, which enable BK activation at physiological intracellular calcium.
View Article and Find Full Text PDFModerate-to-heavy episodic alcohol drinking resulting in 30-80 mM of ethanol in blood constricts cerebral arteries and constitutes a risk factor for cerebrovascular disease. Alcohol-induced constriction of cerebral arteries and has been shown to be blunted by dietary cholesterol (CLR) in a rat model of a high-CLR diet. Such protection has been proposed to arise from the high-CLR diet-driven increase in blood CLR levels and accompanying buildup of CLR within the cerebral artery smooth muscle.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
April 2021
Alcohol constricts cerebral arteries via inhibition of voltage/calcium-gated, large conductance potassium (BK) channels in vascular myocytes. Using a rat model of high-cholesterol (high-CLR) diet and CLR enrichment of cerebral arteries in vitro, we recently showed that CLR protected against alcohol-induced constriction of cerebral arteries. The subcellular mechanism(s) underlying CLR protection against alcohol-induced constriction of the artery is unclear.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
November 2020
The increasing recognition of the role played by cerebral artery dysfunction in brain disorders has fueled the search for new cerebrovascular dilators. Celastrol, a natural triterpene undergoing clinical trials for treating obesity, exerts neuroprotection, which was linked to its antioxidant/anti-inflammatory activities. We previously showed that celastrol fit pharmacophore criteria for activating calcium- and voltage-gated potassium channels of large conductance (BK channels) made of subunits cloned from cerebrovascular smooth muscle (SM).
View Article and Find Full Text PDFCholesterol enrichment of mammalian tissues and cells, including Xenopus oocytes used for studying cell function, can be accomplished using a variety of methods. Here, we describe two important approaches used for this purpose. First, we describe how to enrich tissues and cells with cholesterol using cyclodextrin saturated with cholesterol using cerebral arteries (tissues) and hippocampal neurons (cells) as examples.
View Article and Find Full Text PDFAdv Exp Med Biol
September 2019
Cannabinoids have been widely used for recreational and medicinal purposes. The increasing legalization of cannabinoid use and the growing success in Medicinal Chemistry of cannabinoids have fueled recent interest in cannabinoid-sensing sites in receptor proteins. Here, we review structural data from high-resolution cryo-EM and crystallography studies that depict phytocannabinoid, endocannabinoid, and synthetic cannabinoid molecules bound to various proteins.
View Article and Find Full Text PDFThe endocannabinoid (eCB) system comprises endogenously produced cannabinoids (CBs), enzymes of their production and degradation, and CB-sensing receptors and transporters. The eCB system plays a critical role in virtually all stages of animal development. Studies on eCB system components and their physiological role have gained increasing attention with the rising legalization and medical use of marijuana products.
View Article and Find Full Text PDFCholesterol-protein interactions play a critical role in lipid metabolism and maintenance of cell integrity. To elucidate the molecular mechanisms underlying these interactions, a growing number of studies have focused on determining the crystal structures of a variety of proteins complexed with cholesterol. These include structures in which cholesterol binds to transmembrane domains, and structures in which cholesterol interacts with soluble ones.
View Article and Find Full Text PDF