Near-quantitative DNA bioconjugation and detailed mechanistic investigations of reactions involving 5-(vinyl)-2'-deoxyuridine (VdU) and maleimides are reported. According to accelerated reaction rates in solvents with increasing polarity and trends in product stereochemistry, VdU-maleimide reactions proceed via a formal [4 + 2] stepwise cycloaddition. In contrast, 5-(1,3-butadienyl)-2'-deoxyuridine (BDdU) reacts with maleimides in a concerted [4 + 2] Diels-Alder cycloaddition.
View Article and Find Full Text PDFHere we report dual reactivity of diene-modified duplex DNA containing 5-(1,3-butadienyl)-2'-deoxyuridine "BDdU". Normal-electron demand [4 + 2] cycloaddition proceeded upon addition of a maleimide, whereas inverse-electron demand [2 + 4] cycloaddition occurred upon addition of a tetrazine to give a novel, photoswitchable product.
View Article and Find Full Text PDFA new method for the post-synthetic modification of nucleic acids was developed that involves mixing a phenyl triazolinedione (PTAD) derivative with DNA containing a vinyl nucleobase. The resulting reactions proceeded through step-wise mechanisms, giving either a formal [4+2] cycloaddition product, or, depending on the context of nucleobase, PTAD addition along with solvent trapping to give a secondary alcohol in water. Catalyst-free addition between PTAD and the terminal alkene of 5-vinyl-2'-deoxyuridine (VdU) was exceptionally fast, with a second-order rate constant of 2×10 m s .
View Article and Find Full Text PDF