Publications by authors named "Anna Budikhina"

Article Synopsis
  • A study involving 5,340 residents of Moscow investigated the relationship between immune responses (antibodies and T cells) to SARS-CoV-2 and the likelihood of COVID-19 infection.* -
  • Results showed that individuals with both high T-cell and antibody responses had the lowest risk of infection, while those with only an antibody response also had a strong protective effect.* -
  • The findings highlight that antibody responses are more crucial for protection against SARS-CoV-2 compared to T-cell responses, suggesting potential implications for public health policies related to COVID-19.*
View Article and Find Full Text PDF

Interactions between pattern-recognition receptors shape innate immune responses to pathogens. NOD1 and TLR4 are synergistically interacting receptors playing a pivotal role in the recognition of Gram-negative bacteria. However, mechanisms of their cooperation are poorly understood.

View Article and Find Full Text PDF

Upon activation with pathogen-associated molecular patterns, metabolism of macrophages and dendritic cells is shifted from oxidative phosphorylation to aerobic glycolysis, which is considered important for proinflammatory cytokine production. Fragments of bacterial peptidoglycan (muramyl peptides) activate innate immune cells through nucleotide-binding oligomerization domain (NOD) 1 and/or NOD2 receptors. Here, we show that NOD1 and NOD2 agonists induce early glycolytic reprogramming of human monocyte-derived macrophages (MDM), which is similar to that induced by the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide.

View Article and Find Full Text PDF

Interactions between pattern recognition receptors (PRRs) shape innate immune responses to particular classes of pathogens. Here, we review interactions between TLRs and nucleotide-binding oligomerization domain 1 and 2 (NOD1 and NOD2) receptors, two major groups of PRRs involved in innate recognition of bacteria. Most of experimental data both in vitro and in vivo suggest that NODs and TLRs synergize with each other at inducing the production of cytokines and antimicrobial peptides.

View Article and Find Full Text PDF

The ability of biological fluids to kill microbes is an important feature of the human immune system. Following incubation of fluorescein isothiocyanate-labeled Staphylococcus aureus with biological specimens and subsequent staining with propidium iodide, the proportions of killed bacteria were estimated by flow cytometry. FACScan is a simple, quick and reliable method to evaluate bactericidal activity of biological fluids.

View Article and Find Full Text PDF

The killing of microorganisms by neutrophils causes degranulation of azurophilic, specific, and gelatinase granules into the formed phagolysosomes. During the degranulation process, increased surface expression of CD63 (localized in the azurophilic granules of resting neutrophils) and CD66b/CD67 (from specific granules) can be detected. This results from the fusion of the granule membrane, containing these markers, with a plasma membrane.

View Article and Find Full Text PDF