IEEE Trans Neural Syst Rehabil Eng
April 2023
Objective: The driver fatigue detection using multi-channel electroencephalography (EEG) has been extensively addressed in the literature. However, the employment of a single prefrontal EEG channel should be prioritized as it provides users with more comfort. Furthermore, eye blinks from such channel can be analyzed as the complementary information.
View Article and Find Full Text PDFObjective: Blink-related features derived from electroencephalography (EEG) have recently arisen as a meaningful measure of driver's cognitive state. Combined with band power features of low-channel prefrontal EEG data, blink-derived features enhance the detection of driver drowsiness. Yet, it remains unanswered whether synergy of combined blink and EEG band power features for the detection of driver drowsiness may be further boosted if a proper eye blink removal is also applied before EEG analysis.
View Article and Find Full Text PDFObjective: Recent advances in development of low-cost single-channel electroencephalography (EEG) headbands have opened new possibilities for applications in health monitoring and brain-computer interface (BCI) systems. These recorded EEG signals, however, are often contaminated by eye blink artifacts that can yield the fallacious interpretation of the brain activity. This paper proposes an efficient algorithm, VME-DWT, to remove eye blinks in a short segment of the single EEG channel.
View Article and Find Full Text PDF