The tissue culture passage necessary for the generation of transgenic plants induces genome instability. This instability predominantly involves the uncontrolled mobilization of LTR retrotransposons (LTR-TEs), which are the most abundant class of mobile genetic elements in plant genomes. Here, we demonstrate that in conditions inductive for high LTR-TE mobilization, like abiotic stress in Arabidopsis (Arabidopsis thaliana) and callus culture in rice (Oryza sativa), application of the reverse transcriptase (RT) inhibitor known as Tenofovir substantially affects LTR-TE RT activity without interfering with plant development.
View Article and Find Full Text PDFPlants modulate their growth rates based on the environmental signals; however, it is difficult to experimentally test how natural temperature and light fluctuations affect growth, since realistic outdoor environments are difficult to replicate in controlled laboratory conditions, and it is expensive to conduct experiments in many environmentally diverse regions. In partnership with BBC Terrific Scientific, over 50 primary schools from around the UK grew spring onions outside of hydroponic growth chambers that they constructed. Over 2 weeks, students measured the height of the spring onions daily, while the hourly temperature and visibility data were determined for each school based on the UK Meteorological Office data.
View Article and Find Full Text PDFRetrotransposons have played an important role in the evolution of host genomes. Their impact is mainly deduced from the composition of DNA sequences that have been fixed over evolutionary time. Such studies provide important 'snapshots' reflecting the historical activities of transposons but do not predict current transposition potential.
View Article and Find Full Text PDFTemperature influences the distribution, range, and phenology of plants. The key transcriptional activators of heat shock response in eukaryotes, the heat shock factors (HSFs), have undergone large-scale gene amplification in plants. While HSFs are central in heat stress responses, their role in the response to ambient temperature changes is less well understood.
View Article and Find Full Text PDFPlants have significantly more transcription factor (TF) families than animals and fungi, and plant TF families tend to contain more genes; these expansions are linked to adaptation to environmental stressors. Many TF family members bind to similar or identical sequence motifs, such as G-boxes (CACGTG), so it is difficult to predict regulatory relationships. We determined that the flanking sequences near G-boxes help determine in vitro specificity but that this is insufficient to predict the transcription pattern of genes near G-boxes.
View Article and Find Full Text PDFThe DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR.
View Article and Find Full Text PDFFunctional inactivation of gene expression in mammalian cells is crucial for the study of the contribution of a protein of interest to various pathways(1,2). However, conditional knockdown of gene expression is required in cases when constitutive knockdown is not tolerated by cells for a long period of time(3-5). Here we describe a protocol for preparation of cell lines allowing conditional knockdown of subunits of the ACF chromatin remodeling factor.
View Article and Find Full Text PDFThe adenovirus E4 open-reading-frame 4 (E4orf4) protein regulates the progression of viral infection and when expressed individually it induces non-classical apoptosis in transformed cells. Here we show that E4orf4 associates with the ATP-dependent chromatin-remodeling factor ACF that consists of a sucrose non fermenting-2h (SNF2h) ATPase and an Acf1 regulatory subunit. Furthermore, E4orf4 targets protein phosphatase 2A (PP2A) to this complex and to chromatin.
View Article and Find Full Text PDF