In this study, we report on the applicability of passive sampling with Carbopack X adsorbent tubes followed by thermal desorption gas-chromatography-mass spectrometry (TD-GC-MS) to monitor the concentrations of emerging organic contaminants (EOCs) and solvents in ten indoor environments in a conventional and a vocational training school. However, if passive sampling is to be used as a reliable sampling technique, a specific diffusive uptake rate is required for each target compound. Accordingly, the aim of the present study was twofold.
View Article and Find Full Text PDFIn this paper, we provide a detailed description of the application of passive sampling with Carbopack X tubes followed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) to determine the concentrations of volatile organic compounds (VOCs) in different school environments. The main objective of the study was to monitor VOCs in seven indoor and three outdoor environments at a school in Tarragona, Spain. However, in order to obtain more accurate information, it was necessary to determine the experimental diffusive uptake rates of the target VOCs in indoor settings through parallel passive and active sampling in one classroom.
View Article and Find Full Text PDFIn this study, we analyzed the metabolite features of the yeasts Saccharomyces cerevisiae, Naumovia castellii, and Saccharomyces mikatae. The three species are closely related genetically but differ in their tolerance of desiccation stress. Specifically, we determined whether certain metabolites correlated with cell viability after stress imposition.
View Article and Find Full Text PDFDuring the production of sparkling wine, wine yeasts are subjected to many stress factors apart from ethanol, which lead to the need to achieve their acclimation in line with various industrial protocols. In the present work, 44 commercial wine Saccharomyces cerevisiae strains and one laboratory strain (BY4742) were firstly subjected to the influence of increasing concentrations of ethanol to cluster the yeasts using discriminant function analysis. Afterwards, non-inhibitory concentration (NIC) and minimum inhibitory concentration (MIC) were estimated, revealing some differences between 24 of these strains.
View Article and Find Full Text PDFOctanoic (C8) and decanoic (C10) acids are produced in hypoxic conditions by the yeast Saccharomyces cerevisiae as by-products of its metabolism and are considered fermentation inhibitors in the presence of ethanol at acidic pH. This study aims to broaden our understanding of the physiological limits between toxicity and ester production in yeast cells. To this end, the non-inhibitory concentration (NIC) and maximum inhibitory concentration (MIC) values were first established for C8 and C10 at physiological pH (5.
View Article and Find Full Text PDFSlight variations in lipid composition of wine yeast membranes can alter some essential functions including selective nutrient transport and ion permeability. The absence of oxygen during alcoholic fermentation inhibits fatty acid desaturation and sterol biosynthesis, thereby reducing the stress resistance of yeast cells. In this work, membrane lipids in two commercial active dry yeast strains rehydrated in the presence of three activators (ergosterol, tetrahydrofolic acid, and manganese) were studied.
View Article and Find Full Text PDFThe phospholipid metabolism of Saccharomyces cerevisiae plays a central role in its adaptation to low temperatures. In order to detect the key genes in this adaptation, various phospholipid mutants from the EUROSCARF collection of Saccharomyces cerevisiae BY4742 were tested to ascertain whether the suppression of some genes could improve the fermentation vitality of the cells at low temperature. The cell vitality and phospholipid composition of these mutants were analysed.
View Article and Find Full Text PDF