Varicella zoster virus (VZV) is a lymphotropic alpha-herpesvirinae subfamily member that produces varicella on primary infection and causes zoster, vascular disease and vision loss upon reactivation from latency. VZV-infected peripheral blood mononuclear cells (PBMCs) disseminate virus to distal organs to produce clinical disease. To assess immune evasion strategies elicited by VZV that may contribute to dissemination of infection, human PBMCs and VZV-specific CD8+ T cells (V-CD8+) were mock- or VZV-infected and analyzed for immunoinhibitory protein PD-1, PD-L1, PD-L2, CTLA-4, LAG-3 and TIM-3 expression using flow cytometry.
View Article and Find Full Text PDFBackground: In temporal arteries (TAs) from patients with giant cell arteritis, varicella zoster virus (VZV) is seen in perineurial cells that surround adventitial nerve bundles and form the peripheral nerve-extrafascicular tissue barrier (perineurium). We hypothesized that during VZV reactivation from ganglia, virus travels transaxonally and disrupts the perineurium to infect surrounding cells.
Methods: Mock- and VZV-infected primary human perineurial cells (HPNCs) were examined for alterations in claudin-1, E-cadherin, and N-cadherin.
Purpose: While VZV DNA and antigen have been detected in acute and chronic VZV keratitis, it is unclear whether productive infection of corneal cells is ongoing or whether residual, noninfectious VZV antigens elicit inflammation. Herein, we examined VZV-infected primary human corneal epithelial cells (HCECs) and keratocytes (HKs) to elucidate the pathogenesis of VZV keratitis.
Methods: HCECs and HKs were mock- or VZV infected.
Background: Varicella zoster virus (VZV) is a ubiquitous alphaherpesvirus that produces varicella and zoster. VZV can infect multiple cell types in the spinal cord and brain, including astrocytes, producing myelopathy and encephalopathy. While studies of VZV-astrocyte interactions are sparse, a recent report showed that quiescent primary human spinal cord astrocytes (qHA-sps) did not appear activated morphologically during VZV infection.
View Article and Find Full Text PDFBackground: Varicella zoster virus (VZV) can present as a myelopathy with spinal astrocyte infection. Recent studies support a role for the neurokinin-1 receptor (NK-1R) in virus infections, as well as for cytoskeletal alterations that may promote viral spread. Thus, we examined the role of NK-1R in VZV-infected primary human spinal astrocytes (HA-sps) to shed light on the pathogenesis of VZV myelopathy.
View Article and Find Full Text PDFUnlabelled: Varicella-zoster virus (VZV) vasculopathy produces stroke, giant cell arteritis, and granulomatous aortitis, and it develops after virus reactivates from ganglia and spreads transaxonally to arterial adventitia, resulting in persistent inflammation and pathological vascular remodeling. The mechanism(s) by which inflammatory cells persist in VZV-infected arteries is unknown; however, virus-induced dysregulation of programmed death ligand 1 (PD-L1) may play a role. Specifically, PD-L1 can be expressed on virtually all nucleated cells and suppresses the immune system by interacting with the programmed cell death protein receptor 1, found exclusively on immune cells; thus, downregulation of PD-L1 may promote inflammation, as seen in some autoimmune diseases.
View Article and Find Full Text PDFUnlabelled: Like varicella-zoster virus (VZV), simian varicella virus (SVV) reactivates to produce zoster. In the present study, 5 rhesus macaques were inoculated intrabronchially with SVV, and 5 months later, 4 monkeys were immunosuppressed; 1 monkey was not immunosuppressed but was subjected to the stress of transportation. In 4 monkeys, a zoster rash developed 7 to 12 weeks after immunosuppression, and a rash also developed in the monkey that was not immunosuppressed.
View Article and Find Full Text PDF