Additive manufacturing (AM) techniques are among the fastest-growing technologies for producing even the most geometrically complex models. Unfortunately, the lack of development of metrology guidelines for these methods, related to dimensional and geometry accuracy and surface roughness, significantly limits the commercialization of finished products manufactured using these methods. This paper aims to evaluate the macro- and micro-geometry of models manufactured using the PolyJet method from three types of photopolymer resins: Digital ABS Plus, RGD 720, and Vero Clear.
View Article and Find Full Text PDFThis research paper aims to explore the mechanical characteristics of polyamide PA12 (PA12) as a 3D material printed utilizing Selective Laser Sintering (SLS) and HP MultiJet Fusion (HP MJF) technologies in order to design and manufacture forearm orthoses. The study assessed the flowability of the materials used and compared the mechanical performance of PA12 with each other using tensile, flexure, and impact tests in five different fabrication orientations: X, Y, Z, tilted 45° XZ, and tilted 45° YZ. The results of the study provide, firstly-the data for testing the quality of the applied polyamide powder blend and, secondly-the data for the design of the orthosis geometry from the aspect of its strength parameters and the safety of construction.
View Article and Find Full Text PDFAdditive manufacturing (AM) is a rapidly growing branch of manufacturing techniques used, among others, in the medical industry. New machines and materials and additional processing methods are improved or developed. Due to the dynamic development of post-processing and its relative novelty, it has not yet been widely described in the literature.
View Article and Find Full Text PDFThe paper presents a method of forecasting the product surface topography after five-axis machining with a lens-shaped end-mill. Surface roughness is one of the key parameters considered when assessing the effectiveness of the machining process, especially in the aviation, automotive, tooling and medical equipment industries. The developed method, the first published, presented in the paper is based on the analytical equations of the trajectory of the cutting edge motion, on the basis of which the cutter action surface is generated.
View Article and Find Full Text PDFMeasurements of the active surface microgeometry of the grinding wheel by contact and optical methods are commonly used to obtain a cloud of points representing the surface of the examined tool. Parameters that can be determined on the basis of the above-mentioned measurements can be universal parameters, which are commonly used to assess the geometric structure of a surface or parameters taking into account specific properties of the grinding wheel active surface (GWAS) structure. This article proposes a methodology for determining the average level of binder, which allows the definition the cut-off level required to separate from the measurement data: (i) the areas representing grains, (ii) the areas of gumming up of the grinding wheel, and (iii) deep cavities in approximately the same places on the investigated grinding wheel, regardless of the degree of its wear.
View Article and Find Full Text PDF