Publications by authors named "Anna Barbara Stittrich"

Article Synopsis
  • Post-transplant lymphoproliferative disorder is a serious condition that arises in transplant patients due to weak T cell responses against the Epstein-Barr virus (EBV), often exacerbated by immunosuppressive medication.
  • The study aimed to analyze T cells and lymphoblastoid cell lines from kidney transplant recipients to better understand their responses to various immunosuppressants, revealing differing impacts on T cell function and proliferation.
  • Findings suggest that adjusting immunosuppression—particularly using mTOR inhibitors and reducing certain drugs like calcineurin inhibitors—could enhance antiviral immunity while still preventing organ rejection in patients at risk for EBV-related complications.
View Article and Find Full Text PDF

Proinflammatory type 1 T helper (Th1) cells are enriched in inflamed tissues and contribute to the maintenance of chronic inflammation in rheumatic diseases. Here we show that the microRNA- (miR-) 31 is upregulated in murine Th1 cells with a history of repeated reactivation and in memory Th cells isolated from the synovial fluid of patients with rheumatic joint disease. Knock-down of miR-31 resulted in the upregulation of genes associated with cytoskeletal rearrangement and motility and induced the expression of target genes involved in T cell activation, chemokine receptor- and integrin-signaling.

View Article and Find Full Text PDF

Regulatory T-cells induced via IL-2 and TGFβ in vitro (iTreg) suppress immune cells and are potential therapeutics during autoimmunity. However, several reports described their re-differentiation into pathogenic cells in vivo and loss of their key functional transcription factor (TF) FOXP3 after T-cell antigen receptor (TCR)-signalling in vitro. Here, we show that TCR-activation antagonizes two necessary TFs for foxp3 gene transcription, which are themselves regulated by phosphorylation.

View Article and Find Full Text PDF

Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the presence of aplasia cutis congenita (ACC) of the scalp vertex and terminal limb-reduction defects. Cardiovascular anomalies are also frequently observed. Mutations in five genes have been identified as a cause for AOS prior to this report.

View Article and Find Full Text PDF

We sequenced the genomes of 200 individuals from 41 families multiply affected with bipolar disorder (BD) to identify contributions of rare variants to genetic risk. We initially focused on 3,087 candidate genes with known synaptic functions or prior evidence from genome-wide association studies. BD pedigrees had an increased burden of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated calcium channels.

View Article and Find Full Text PDF

Repeatedly activated T helper 1 (Th1) cells present during chronic inflammation can efficiently adapt to the inflammatory milieu, for example, by expressing the transcription factor Twist1, which limits the immunopathology caused by Th1 cells. Here, we show that in repeatedly activated murine Th1 cells, Twist1 and T-bet induce expression of microRNA-148a (miR-148a). miR-148a regulates expression of the proapoptotic gene Bim, resulting in a decreased Bim/Bcl2 ratio.

View Article and Find Full Text PDF

Notch signaling determines and reinforces cell fate in bilaterally symmetric multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects.

View Article and Find Full Text PDF

Adams-Oliver syndrome (AOS) is a rare malformation syndrome characterized by the presence of two anomalies: aplasia cutis congenita of the scalp and transverse terminal limb defects. Many affected individuals also have additional malformations, including a variety of intracranial anomalies such as periventricular calcification in keeping with cerebrovascular microbleeds, impaired neuronal migration, epilepsy, and microcephaly. Cardiac malformations can be present, as can vascular dysfunction in the forms of cutis marmorata telangiectasia congenita, pulmonary vein stenoses, and abnormal hepatic microvasculature.

View Article and Find Full Text PDF

The Forkhead box O (FoxO) family of transcription factors is important for the maintenance of immunological homeostasis and tolerance by controlling the development and function of B and T lymphocytes. Because dysregulation in FoxO activity can result in chronic inflammation and autoimmunity, the transcriptional activity of FoxO proteins is tightly controlled and generally dependent on complex posttranslational modifications that lead either to their nuclear entry and subsequent activation or, alternatively, to their nuclear export. The phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB/Akt) axis represents the major pathway phosphorylating and thereby inactivating FoxO proteins.

View Article and Find Full Text PDF

After being activated by antigen, helper T lymphocytes switch from a resting state to clonal expansion. This switch requires inactivation of the transcription factor Foxo1, a suppressor of proliferation expressed in resting helper T lymphocytes. In the early antigen-dependent phase of expansion, Foxo1 is inactivated by antigen receptor-mediated post-translational modifications.

View Article and Find Full Text PDF