Nucleic acid amplification technology, such as polymerase chain reaction (PCR), has enabled highly sensitive and specific disease detection and quantification, leading to more accurate diagnosis and treatment regimens. Lab-on-a-chip applications have developed methods to partition single biomolecules, such as DNA and RNA, into picoliter-sized droplets. These individual reaction vessels lead to digitization of PCR enabling improved time to detection and direct quantification of nucleic acids without a standard curve, therefore simplifying assay analysis.
View Article and Find Full Text PDFNanocarriers and nanoparticles remain an intense pharmaceutical and medical imaging technology interest. Their entry into clinical use is hampered by the lack of reliable in vitro models that accurately predict in vivo toxicity. This study evaluates a 3-D kidney organoid proximal tubule culture to assess in vitro toxicity of the hydroxylated generation-5 PAMAM dendrimer (G5-OH) compared to previously published preclinical in vivo rodent nephrotoxicity data.
View Article and Find Full Text PDFDrug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models.
View Article and Find Full Text PDFThe cellular microenvironment is recognized to play a key role in stabilizing cell differentiation states and phenotypes in culture. This study addresses the hypothesis that preservation of in vivo-like tissue architecture in vitro produces a cell culture more capable of responding to environmental stimuli with clinically relevant toxicity biomarkers. This was achieved using kidney proximal tubules in three-dimensional organoid hydrogel culture, with comparisons to conventional monolayer kidney cell cultures on plastic.
View Article and Find Full Text PDFCell-cell and cell-matrix interactions control cell phenotypes and functions in vivo. Maintaining these interactions in vitro is essential to both produce and retain cultured cell fidelity to normal phenotype and function in the context of drug efficacy and toxicity screening. Two-dimensional (2-D) cultures on culture plastics rarely recapitulate any of these desired conditions.
View Article and Find Full Text PDFDrug candidate and toxicity screening processes currently rely on results from early-stage in vitro cell-based assays expected to faithfully represent essential aspects of in vivo pharmacology and toxicology. Several in vitro designs are optimized for high throughput to benefit screening efficiencies, allowing the entire libraries of potential pharmacologically relevant or possible toxin molecules to be screened for different types of cell signals relevant to tissue damage or to therapeutic goals. Creative approaches to multiplexed cell-based assay designs that select specific cell types, signaling pathways and reporters are routine.
View Article and Find Full Text PDFRecent efforts show that significantly reducing implant-adsorbed proteins does not avoid the foreign body response. Fluorinated surfaces are commonly used to passivate cell-mediated inflammatory responses to implanted materials but adsorb host proteins and facilitate the attachment and proliferation of macrophages. This study considers in vitro macrophage activation to fluorinated TeflonAF(®) compared to tissue-culture polystyrene using pre-adsorbed proteins (fibrinogen, BSA, collagen and elastin).
View Article and Find Full Text PDFFungi are increasingly identified as major pathogens in bloodstream infections, often involving indwelling devices. Materials with antifungal properties may provide an important deterrent to these infections. Here we describe amphogel, a dextran-based hydrogel into which amphotericin B is adsorbed.
View Article and Find Full Text PDFPeritoneal adhesions are tissue connections that form within the abdominopelvic cavity following surgery or other injuries. They can cause major medical complications. Barrier devices and pharmacological agents have been used to prevent adhesion formation, with mixed success.
View Article and Find Full Text PDF