This study investigates the impact of plasma-seed interaction on germination and early plant development, focusing on and . The investigation delves into changes in chemical composition, water absorption, and surface morphology induced by plasma filaments generated in synthetic air. These analyses were conducted using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2021
A unique composite nanodiamond-based porous material with a hierarchically-organized submicron-nano-structure was constructed for potential bone tissue engineering. This material consisted of submicron fibers prepared by electrospinning of silicon oxide (SiO), which were oxygen-terminated (O-SiO) and were hermetically coated with nanocrystalline diamond (NCD) films. The NCD films were then terminated with hydrogen (H-NCD) or oxygen (O-NCD).
View Article and Find Full Text PDFNanocrystalline diamond (NCD) layers functionalized with amine-containing functional groups have generated considerable interest as biocompatible substrates for attachment of biomolecules and cells with a view to biosensor and tissue engineering applications. Here we prepare nanoporous diamond layers with the surfaces modified by hydrogen plasma, oxygen plasma, and conformal 7 nm amine-containing plasma polymer (PP). Immobilization of bovine serum albumin (BSA) molecules is characterized on such surfaces.
View Article and Find Full Text PDFMicromachines (Basel)
June 2018
Color centers in diamond have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report the optoelectronic investigation of shallow silicon vacancy (SiV) color centers in ultra-thin (7⁻40 nm) nanocrystalline diamond (NCD) films with variable surface chemistry. We show that hydrogenated ultra-thin NCD films exhibit no or lowered SiV photoluminescence (PL) and relatively high negative surface photovoltage (SPV) which is ascribed to non-radiative electron transitions from SiV to surface-related traps.
View Article and Find Full Text PDFPlasma chemical surface modification of nanoparticles in gas-liquid type reactors enables a controllable, specific, low-cost, and environmentally friendly alternative to wet chemistry methods or thermal and dry plasma treatments. Here the atmospheric pressure radio-frequency microplasma jet (µ-APPJ) operating with 0.6% O in He is used to deliver aqueous oxygen radicals (AOR) to the surface of ∼3 nm hydrogenated detonation nanodiamonds (H-DNDs) suspended in water.
View Article and Find Full Text PDFImproving the performance of p-type photoelectrodes represents a key challenge toward significant advancement in the field of tandem dye-sensitized solar cells. Herein, we demonstrate the application of boron-doped nanocrystalline diamond (B:NCD) thin films, covalently functionalized with a dithienopyrrole-benzothiadiazole push-pull chromophore, as alternative photocathodes. First, a primary functional handle is introduced on H-terminated diamond electrochemical diazonium grafting.
View Article and Find Full Text PDFNanodiamonds (NDs) and graphene oxide (GO) are modern carbon-based nanomaterials with promising features for the inhibition of microorganism growth ability. Here we compare the effects of nanodiamond and graphene oxide in both annealed (oxidized) and reduced (hydrogenated) forms in two types of cultivation media-Luria-Bertani (LB) and Mueller-Hinton (MH) broths. The comparison shows that the number of colony forming unit (CFU) of is significantly lowered (45%) by all the nanomaterials in LB medium for at least 24 h against control.
View Article and Find Full Text PDFTwo profoundly different carbon allotropes - nanocrystalline diamond and graphene - are of considerable interest from the viewpoint of a wide range of biomedical applications including implant coating, drug and gene delivery, cancer therapy, and biosensing. Osteoblast adhesion and proliferation on nanocrystalline diamond and graphene are compared under various conditions such as differences in wettability, topography, and the presence or absence of protein interlayers between cells and the substrate. The materials are characterized in detail by means of scanning electron microscopy, atomic force microscopy, photoelectron spectroscopy, Raman spectroscopy, and contact angle measurements.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2015
High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized.
View Article and Find Full Text PDFThe surfaces of electrospun polystyrene (PS) nanofiber materials with encapsulated 1% w/w 5,10,15,20-tetraphenylporphyrin (TPP) photosensitizer were modified through sulfonation, radio frequency (RF) oxygen plasma treatment, and polydopamine coating. The nanofiber materials exhibited efficient photogeneration of singlet oxygen. The postprocessing modifications strongly increased the wettability of the pristine hydrophobic PS nanofibers without causing damage to the nanofibers, leakage of the photosensitizer, or any substantial change in the oxygen permeability of the inner bulk of the polymer nanofiber.
View Article and Find Full Text PDFWe report on the fabrication and practical use of high-quality optical elements based on Au mirrors coated with diamond layers with flat, nanocolumnar, and nanoporous morphologies. Diamond layers (100 nm thickness) are grown at low temperatures (about 300 °C) from a methane, carbon dioxide, and hydrogen gas mixture by a pulsed microwave plasma system with linear antennas. Using grazing angle reflectance (GAR) Fourier transform infrared spectroscopy with p-polarized light, we compare the IR spectra of fetal bovine serum proteins adsorbed on diamond layers with oxidized (hydrophilic) surfaces.
View Article and Find Full Text PDFIn this study, the influence of the size and surface termination of diamond nanoparticles (DNPs) on their antibacterial activity against Escherichia coli and Bacillus subtilis was assessed. The average size and distribution of DNPs were determined by dynamic light scattering and X-ray diffraction techniques. The chemical composition of the DNPs studied by X-ray photoelectron spectroscopy showed that DNPs > 5 nm and oxidized particles have a higher oxygen content.
View Article and Find Full Text PDFA new route for coating various substrates with antifouling polymer layers was developed. It consisted in deposition of an amino-rich adhesion layer by means of RF magnetron sputtering of Nylon 6,6 followed by the well-controlled, surface-initiated atom transfer radical polymerization of antifouling polymer brushes initiated by bromoisobutyrate covalently attached to amino groups present in the adhesion layer. Polymer brushes of hydroxy- and methoxy-capped oligoethyleneglycol methacrylate and carboxybetaine acrylamide were grafted from bromoisobutyrate initiator attached to a 15 nm thick amino-rich adhesion layer deposited on gold, silicon, polypropylene, and titanium-aluminum-vanadium alloy surfaces.
View Article and Find Full Text PDF