Tubular structures built from amphiphilic molecules are of interest for nano-sensing, drug delivery, and structuring of oils. In this study, we characterized the tubules built in aqueous suspensions of a cholesteryl nucleoside conjugate, cholesterylaminouridine (CholAU) and phosphatidylcholines (PCs). In mixtures with unsaturated PCs having chain lengths comparable to the length of CholAU, two different types of tubular structures were observed; nano- and micro-tubules had average diameters in the ranges 50-300 nm and 2-3 μm, respectively.
View Article and Find Full Text PDFLipophilic nucleic acids have become a versatile tool for structuring and functionalization of lipid bilayers and biological membranes as well as cargo vehicles to transport and deliver bioactive compounds, like interference RNA, into cells by taking advantage of reversible hybridization with complementary strands. This contribution reviews the different types of conjugates of lipophilic nucleic acids, and their physicochemical and self-assembly properties. Strategies for choosing a nucleic acid, lipophilic modification, and linker are discussed.
View Article and Find Full Text PDFLateral partitioning of lipid-modified molecules between liquid-disordered (ld) and liquid-ordered (lo) domains depends on the type of lipid modification, presence of a spacer, membrane composition, and temperature. Here, we show that the lo domain partitioning of the palmitoylated peptide nucleic acid (PNA) can be influenced by formation of a four-component complex with the ld domain partitioning tocopherol-modified DNA: the PNA-DNA complex partitioned into the ld domains. Enzymatic cleavage of the DNA linker led to the disruption of the complex and restored the initial distribution of the lipophilic nucleic acids into the respective domains.
View Article and Find Full Text PDFThe development of targeted and triggerable delivery systems is of high relevance for anticancer therapies. We report here on reduction-sensitive liposomes composed of a novel multifunctional lipidlike conjugate, containing a disulfide bond and a biotin moiety, and natural phospholipids. The incorporation of the disulfide conjugate into vesicles and the kinetics of their reduction were studied using dansyl-labeled conjugate 1 in using the dansyl fluorescence environmental sensitivity and the Förster resonance energy transfer from dansyl to rhodamine-labeled phospholipids.
View Article and Find Full Text PDFLipid domains in mammalian plasma membranes serve as platforms for specific recruitment or separation of proteins involved in various functions. Here, we have applied this natural strategy of lateral separation to functionalize lipid membranes at micrometer scale in a switchable and reversible manner. Membrane-anchored peptide nucleic acid and DNA, differing in their lipophilic moieties, partition into different lipid domains in model and biological membranes.
View Article and Find Full Text PDFWe describe the formation of lipid microtubes from a novel cholesterol-modified nucleoside in binary mixture with phospholipids. Stable cylindrical structures with an outer diameter of 2-3 microm and a length of 20-40 microm were formed. By varying the preparation conditions, thinner tubules with nanometre-scale diameters could also be obtained.
View Article and Find Full Text PDFCholesterol-based lipophilic oligonucleotides incorporated into lipid membranes were studied using solid-state NMR, differential scanning calorimetry, and fluorescence methods. Lipophilic oligonucleotides can be used to build nanotechnological structures on membrane surfaces, taking advantage of the specific Watson-Crick base pairing. We used a cholesteryl-TEG anchor first described by Pfeiffer and Hook (J.
View Article and Find Full Text PDFAdhesion and degranulation-promoting adapter protein (ADAP) is critically involved in downstream signalling events triggered by the activation of the T cell receptor. Cytokine production, proliferation and integrin clustering of T cells are dependent on ADAP function, but the molecular basis for these processes is poorly understood. We now show the hSH3 domain of ADAP to be a lipid-interaction module that binds to acidic lipids, including phosphatidylinositides.
View Article and Find Full Text PDFThe proteins of the MARCKS (myristoylated alanine-rich C kinase substrate) family were first identified as prominent substrates of protein kinase C (PKC). Since then, these proteins have been implicated in the regulation of brain development and postnatal survival, cellular migration and adhesion, as well as endo-, exo- and phago-cytosis, and neurosecretion. The effector domain of MARCKS proteins is phosphorylated by PKC, binds to calmodulin and contributes to membrane binding.
View Article and Find Full Text PDF